Technical Meeting and Exhibition

MATERIALS SCIENCE & TECHNOLOGY

In-Person Event: OCTOBER 17-20, 2021 • COLUMBUS, OHIO On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

TECHNICAL PROGRAM

The content in the technical program was generated on October 11, 2021. Please refer to the online session sheets for the most up-to-date information.

YOUR VALUABLE PARTNER IN MATERIAL SCIENCE

- Alumina
- Sapphine
- Quartz
- Boron Nitride
- High Purity Powders
- Laser Marking Machine
- Laser Machining

Http://www.advaluetech.com

Te:1-520-514-1100,Fax:1-520-747-4024
Email:sales@advaluetech.com
3158S. Chrysler Ave., Tucson, AZ 85713, U.S.A

Program At A Glance

Information as of October 11. Individual talks are listed on session room signs and the MS&T mobile app.

There will be two ways to access this year's technical programming content: at the in-person MS&T conference in Columbus, Ohio, October 17-20, or as on-demand presentations, which can be viewed remotely October 22 through December 31, 2021.

Topic Area/Symposium	Date	Time	Room	Page
Program Highlights				
MS&T21 Plenary Session	TUE	AM	USB	38
MS&T21 Poster Session	TUE	AM & PM	EH B	69
ACerS Basic Science Division Robert B. Sosman Lecture	WED	PM	B130	60
ACerS Frontiers of Science and Society - Rustum Roy Lecture	TUE	PM	B130	38
ACerS GOMD Alfred R. Cooper Award Session	TUE	PM	B231	44
Acers Navrotsky Award for Experimental Thermodynamics of Solids	MON	AM	A221	24
ACerS/EPDC: Arthur L. Friedberg Ceramic Engineering Tutorial and Lecture	MON	AM	B130	11
Additive Manufacturing				
Additive Manufacturing: Advanced Characterization for Industrial Applications				
In-situ and Operando Techniques	MON	AM	A121	13
Structures and Material Properties	MON	PM	A121	27
On-Demand Oral Presentations	FRI	AM	OND	84
Additive Manufacturing: Alloy Design to Develop New Feedstock Materials III				
Modeling and Experiments	MON	AM	A111	13
On-Demand Oral Presentations	FRI	AM	OND	84
Additive Manufacturing: Large-Scale Metal Additive Manufacturing				
Advanced Manufacturing Process	WED	AM	A114	50
Microstructure, Property, and Performance: Characterization and Simulation	WED	PM	A114	62
On-Demand Oral Presentations	FRI	AM	OND	85
Additive Manufacturing: Mechanisms and Mitigation of Aqueous Corrosion and Hig	gh-temperati	ıre Oxidatio	n	
Corrosion Assessment of Additively Manufactured Parts I	WED	AM	A112	50
Corrosion Assessment of Additively Manufactured Parts II	WED	PM	A112	63
On-Demand Oral Presentations	FRI	AM	OND	85
Additive Manufacturing: Processing, Microstructure and Material Properties of Tital	nium-based	Materials		
Session I	MON	AM	A120	13
Session II	MON	PM	A120	27
Session III	TUE	PM	A120	41
Poster Session	TUE	PM	EH B	77
Session IV	WED	AM	A120	50
On-Demand Oral Presentations	FRI	AM	OND	85
Additive Manufacturing of Metals: Equipment, Instrumentation and In-Situ Process	Monitoring			
Process Monitoring and Modeling Methods	TUE	PM	A121	40
Imaging and Sensing Methods	WED	AM	A121	49
Novel Instrumentation	WED	PM	A121	61
On-Demand Oral Presentations	FRI	AM	OND	83
Additive Manufacturing of Metals: ICME Gaps: Material Property and Validation Dat	a to Support	Certification	n	
Data Needs for Simulation: Material Property and Validation Data to Support	MON	AM	A114	12
Certification				
Data Acquisition: Material Property and Validation Data to Support Certification	MON	PM	A114	26
Data Applications: Material Property and Validation Data to Support Certification	TUE	PM	A114	41
On-Demand Oral Presentations	FRI	AM	OND	84
Additive Manufacturing of Metals: Microstructure, Properties and Alloy Developme				,
Al-based Alloys	MON	AM	A115	12
Ni-based Alloys	MON	PM	A115	26
Ti-/Co-/Cr-/Cu-based Alloys	TUE	PM	A115	40
Other Miscellaneous Materials/Alloys	WED	AM	A115	49
Fe-based Alloys	WED	PM	A115	62

Topic Area/Symposium	Date	Time	Room	Page
Additive Manufacturing: Miscellaneous	WED	PM	A120	61
On-Demand Oral Presentations	FRI	AM	OND	83
Additive Manufacturing Modeling and Simulation: Microstructure, Mechanics, a	and Process			
AM Modeling - Microstructures & Defects	MON	AM	A113	11
AM Modeling - Mechanical Properties	MON	PM	A113	25
AM Modeling - Machine Learning and Artificial Intelligence	TUE	PM	A113	39
Poster Session	TUE	PM	EH B	76
AM Modeling - On-Demand Oral Presentations	FRI	AM	OND	80
AM Modeling - On-Demand Poster Presentations	FRI	AM	OND	81
Additive Manufacturing of Ceramic-based Materials: Process Development, Ma	aterials, Process	Optimizatio		ions
Session I: Extrusion-based AM	MON	AM	A112	11
Session II: Extrusion-based AM and Stereolithography	MON	PM	A112	25
Session III: Laser Powder Bed Fusion and Novel AM Processes	TUE	PM	A112	39
On-Demand Oral Presentations	FRI	AM	OND	81
On-Demand Poster Presentations	FRI	AM	OND	82
Additive Manufacturing of High and Ultra-High Temperature Ceramics and Cor		•		
Binder Jet 3D Printing, Post-processing, and Testing	MON	PM	A111	26
Laser-based Additive Manufacturing, New Methods, and Testing	TUE	PM	A111	40
Polymer-derived Ceramics (PDCs) and Novel Processing Methods	WED	AM	A111	49
Extrusion-based Additive Manufacturing Methods	WED	PM	A111	61
On-Demand Oral Presentations	FRI	AM	OND	82
Late News Poster Session				
Additive Manufacturing	TUE	PM	EH B	77
On-Demand Additive Manufacturing Poster Session	FRI	AM	OND	102
Artificial Intelligence				
Accelerating Materials Science with Big Data and Machine Learning				
Session I	MON	AM	A123	10
Session II	TUE	PM	A123	38
Poster Session	TUE	PM	EH B	76
On-Demand Oral Presentations	FRI	AM	OND	80
On-Demand Poster Presentations	FRI	AM	OND	80
Al for Big Data Problems in Advanced Imaging, Materials Modeling and Automa	ated Synthesis			
Accelerating Discovery of Materials	MON	AM	A124	16
Artificial Intelligence for Automated Synthesis and Characterization	MON	PM	A124	30
On-Demand Oral Presentations	TUE	PM	OND	90
Materials Informatics for Images and Multi-dimensional Datasets				
Session I	WED	AM	A124	56
Session II	WED	PM	A124	67
On-Demand Oral Presentations	FRI	AM	OND	103
Late News Poster Session		, , , ,	<u> </u>	
On-Demand Artificial Intelligence Poster Session	FRI	AM	OND	102
Biomaterials	110	7 (1 1	OND	102
Next Generation Biomaterials				
Session I	MON	AM	A224	22
Poster Session	TUE	PM	EH B	75
Session II	TUE	PM	A224	47
Session III	WED	AM	A224	57
On-Demand Oral Presentations	FRI	AM	OND	106
On-Demand Poster Presentations	FRI	AM	OND	107
Porous Materials for Biomedical Applications	110	, ,,,,	5.15	
Poster Session	TUE	PM	EH B	75
Session I	TUE	PM	A222	47
JCJJIOT I	TOL	1 1 1 1		1 -1/

Program At A Glance

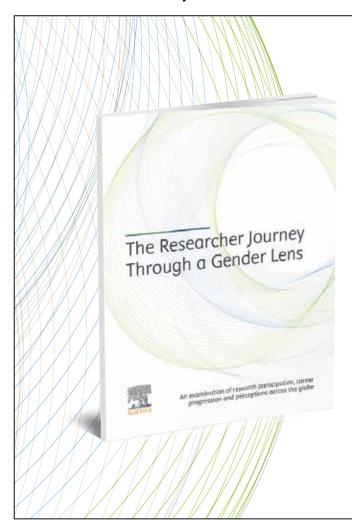
Topic Area/Symposium	Date	Time	Room	Page
On-Demand Oral Presentations	FRI	AM	OND	108
Surface Engineering and Characterization of Titanium and Titanium Alloys				
On-Demand Oral Sessions	FRI	AM	OND	113
Late News Poster Session				
Biomaterials	TUE	PM	EH B	74
Ceramic and Glass Materials				
Ceramic Matrix Composites				
Session I	MON	AM	B232	17
Session II	MON	PM	B232	31
Poster Session	TUE	AM	EH B	70
On-Demand Oral Presentations	FRI	AM	OND	90
Ceramics and Glasses Modeling by Simulations and Machine Learning				
Poster Session	TUE	AM	EH B	71
Session I	WED	AM	B231	52
Session II	WED	PM	B231	64
On-Demand Oral Presentations	FRI	AM	OND	91
On-Demand Poster Presentations	FRI	AM	OND	91
Engineering Ceramics: Microstructure-Property-Performance Relations and Appl	lications			
Engineering Ceramics	TUE	PM	B233	44
On-Demand Mechanical Properties of Engineering Ceramics/Applications	FRI	AM	OND	97
On-Demand Processing-Property Relations	FRI	AM	OND	97
On-Demand Poster Presentations	FRI	AM	OND	97
Glasses and Optical Materials: Current Issues and Functional Applications	•			
Dissolution and Mechanical Properties of Amorphous Solids	MON	AM	B231	19
Optical Properties and Processing of Amorphous Solids	MON	PM	B231	34
ACerS GOMD Alfred R. Cooper Award Session	TUE	PM	B231	44
On-Demand Oral Presentations	FRI	AM	OND	98
Journal of the American Ceramic Society Awards Symposium	•			
Journal of the American Ceramic Society Awards Symposium I	WED	AM	B233	55
Journal of the American Ceramic Society Awards Symposium II	WED	PM	B233	66
Manufacturing and Processing of Advanced Ceramic Materials				
New Opportunities in Ceramic Processing I	MON	AM	B234	21
New Opportunities in Ceramic Processing II	MON	PM	B234	36
Processing of Oxide Ceramics	TUE	PM	B234	46
Processing of Carbides, Borides, and Nitrides	WED	AM	B234	56
On-Demand Advanced Manufacturing Process of Ceramics	FRI	AM	OND	102
Phase Transformations in Ceramics: Science and Applications				
Experimental Studies on Structure and Control I	MON	AM	B230	23
Experimental Studies on Structure and Control II	MON	AM	B230	36
Poster Session	TUE	AM	EH B	73
Computation and Predictions	TUE	PM	B230	47
On-Demand Oral Presentations	FRI	AM	OND	108
Preceramic Polymers; Synthesis, Processing, Modeling, and Derived Ceramics				
Preceramic Polymers and Polymer Derived Ceramics I	WED	AM	B230	58
Preceramic Polymers and Polymer Derived Ceramics II	WED	PM	B230	67
On-Demand Oral Session: Preceramic Polymers	FRI	AM	OND	109
On-Demand Poster Presentations	FRI	AM	OND	110
Solid-state Optical Materials and Luminescence Properties				
Session I	WED	AM	B232	60
On-Demand Oral Presentations	FRI	PM	OND	112
Late News Poster Session				
Ceramic and Glass Materials	TUE	AM	EH B	72

Topic Area/Symposium	Date	Time	Room	Page
Electronic and Magnetic Materials				
Advances in Dielectric Materials and Electronic Devices				
Processing/Analysis of Dielectrics & Piezoelectrics	MON	AM	B235	15
Magnetic Materials	MON	PM	B235	29
Poster Session	TUE	AM	EH B	70
Modeling	TUE	PM	B235	42
On-Demand Poster Presentations	FRI	AM	OND	88
On-Demand Oral Presentations	FRI	AM	OND	88
Functional Defects in Electroceramic Materials				
Session I: Defect Engineering in Ceramic Materials	WED	AM	B235	54
On-Demand Oral Presentations	FRI	AM	OND	98
Late News Poster Session				•
Electronic and Magnetic Materials	TUE	AM	EH B	72
Energy				
Advanced Characterization of Materials for Nuclear, Radiation, and Extreme	e Environments			
Fusion Materials and Metals	MON	AM	A215	14
Nuclear Fuels, Ceramics, and Corrosion	MON	PM	A215	28
Thermomechanical Testing and In Situ Environments	TUE	PM	A215	42
Data Intensive and Correlative Methods	WED	AM	A215	51
On-Demand Oral Presentations	FRI	AM	OND	86
On-Demand Poster Presentations	FRI	AM	OND	86
Energy Materials for Sustainable Development		Airi	OND	00
Energy Harvesting	MON	AM	A216	19
Solar Energy Conversion	MON	PM	A216	33
	TUE	1	A216	44
Storage Batteries I		PM		53
Fuel Cells/Storage Batteries II	WED	AM	A216	1
Capacitative, Chemical and Thermal Storage and Conversion	WED	PM	A216 OND	65 95
On Demand Energy Harvesting	FRI	AM		
On Demand Storage and Conversion	FRI	AM	OND	96
Hybrid Organic—Inorganic Materials for Alternative Energy On Demonstrations	FDI	A N 4	OND	100
On-Demand Oral Presentations	FRI	AM	OND	100
Late News Poster Session	T. I.E.	DNA	ELLD	75
Energy	TUE	PM	EH B	75
Fundamentals and Characterization				
Deformation-induced Phase Transformations	14011	514	D400	00
Deformation-induced Phase Transformations	MON	PM	B132	32
Poster Session	TUE	AM	EH B	71
On-Demand Oral Presentations	FRI	AM	OND	93
On-Demand Poster Presentations	FRI	AM	OND	94
Emergent Materials under Extremes and Decisive In Situ Characterizations				1
Materials Characterization at Extreme Conditions	WED	PM	B244/245	65
On-Demand Oral Presentations	FRI	AM	OND	94
Grain Boundaries, Interfaces, and Surfaces in Ceramics: Fundamental Struc	cture—Property—Pe	rformance l	Relationships	
Atomistic Approaches	MON	AM	B244/245	19
Continuum Approaches	MON	PM	B244/245	34
Poster Session	TUE	AM	EH B	71
Field Assisted Processes and Mechanics	TUE	PM	B244/245	45
On-Demand Oral Presentations	FRI	AM	OND	99
High Entropy Materials: Concentrated Solid Solutions, Intermetallics, Ceran	nics, Functional Mate	erials and B	eyond II	
Materials Discovery and Design I	MON	AM	B131	20
·	MON	PM	B131	34
Materials Discovery and Design II	INION	1 11		

Program At A Glance

Topic Area/Symposium	Date	Time	Room	Page
Processing and Properties II	WED	AM	B131	54
Theory and Modeling I	WED	AM	B132	55
Processing and Properties III	WED	PM	B132	65
Theory and Modeling II	WED	PM	B131	66
On-Demand Oral Presentations	FRI	AM	OND	99
Integration between Modeling and Experiments for Crystalline Metals: From Ator	nistic to Macro	scopic Sca	ales III	
Session I	MON	AM	B246	20
Session II	MON	PM	B246	35
Poster Session	TUE	PM	EH B	72
Session III	WED	AM	B246	46
On-Demand Oral Session I	FRI	AM	OND	101
On-Demand Oral Session II	FRI	AM	OND	101
Materials vs Minerals: Bridging the Gap between Materials Science and Earth and	d Planetary Sci			
On-Demand Oral Presentations	FRI	AM	OND	104
Nucleation of Solid-State Phase Transformations			•	
Nucleation of Solid-State Phase Transformations	MON	AM	B132	22
Poster Session	TUE	AM	EH B	72
On-Demand Oral Presentations	FRI	AM	OND	107
Probing Defect Properties and Behavior under Mechanical Deformation and Extre		•		
In Situ and Advanced Characterization of Defects	MON	PM	B140/141	36
Defect-mediated Mechanical Performance and Damage Tolerance	TUE	PM	B140/141	48
Radiation Response and Defect Evolution I	WED	AM	B140/141	58
On-Demand Oral Session: Defect Property, Characterization, and Evolution	FRI	AM	OND	110
Processing—Microstructure—Property Relationships of Titanium and Titanium Al			, 5.15	
Poster Session	TUE	AM	EH B	73
Session I	WED	AM	B246	58
Session II	WED	PM	B246	67
On-Demand Oral Presentations	FRI	AM	OND	112
Late News Poster Session				,
Fundamentals and Characterization	TUE	AM	EH B	72
Iron and Steel (Ferrous Alloys)				
Advancements in Steel Structural Refinement				
Advancements in Steel Structural Refinement	MON	AM	A211	15
On-Demand Oral Presentations	FRI	AM	OND	88
Advances in Ferrous Metallurgy				,
Advances in Ironmaking, Steelmaking, and Casting	MON	AM	A210	16
Advances in Steel Products	MON	PM	A210	29
Developments in Testing and Processing	TUE	PM	A210	43
On-Demand Oral Presentations	FRI	AM	OND	89
Advances in Metallic Coated Advanced Steels				
Liquid Metal Embrittlement and Advances in Coating Production	MON	PM	A211	30
Poster Session	TUE	PM	EH B	77
On-Demand Oral Presentations	FRI	AM	OND	89
Developments in Plate and Line Pipe Steels		•		
Developments in Plate and Line Pipe Steels	TUE	PM	A211	44
On-Demand Oral Presentations	FRI	AM	OND	94
Fracture of Steels: New Approaches to Modeling and Experimental Characterizat				
Session I	WED	AM	A211	54
On-Demand Oral Presentations	FRI	AM	OND	98
New Frontiers in Physical Metallurgy of Steels				
New Frontiers in Physical Metallurgy of Steels I	WED	AM	A210	57
New Holligs III Ellasiai Merarrana or Sreers i				

Topic Area/Symposium	Date	Time	Room	Page
Late News Poster Session				
Iron and Steel (Ferrous Alloys)	TUE	PM	EH B	77
Materials-Environment Interactions				
Advanced Coatings for Wear and Corrosion Protection				
Session I	MON	AM	A220	14
Session II	MON	PM	A220	28
Poster Session	TUE	PM	EH B	74
On-Demand Oral Presentations	FRI	AM	OND	87
On-Demand Poster Presentations	FRI	AM	OND	87
Advanced Materials for Harsh Environments				
Session I	MON	PM	A223	29
Poster Session	TUE	PM	EH B	74
Session II	TUE	PM	A223	42
Session III	WED	AM	A223	52
Session IV	WED	PM	A223	63
Session V	WED	PM	A224	63
On-Demand Oral Presentations	FRI	PM	OND	87
Coatings to Protect Materials from Extreme Environments				
Environmental and Thermal Barrier Coatings	MON	AM	A222	`17
Coatings and Surface Treatments for Extreme Environments	MON	PM	A222	31
On-Demand Coatings for Extreme Environments	FRI	AM	OND	91
On-Demand Poster Presentations	FRI	AM	OND	92
Computation Assisted Materials Development for Improved Corrosion Resistance				
Poster Session	TUE	PM	EH B	74
A: Low Temperature Corrosion	WED	AM	A222	52
B: High Temperature Corrosion	WED	PM	A222	64
On-Demand Oral Presentations	FRI	AM	OND	92
On-Demand Poster Presentations	FRI	AM	OND	92
Progressive Solutions to Improve Corrosion Resistance for Nuclear Waste Storage				`
Corrosion and Aspects of Environmentally Safe Processing of Nuclear Waste Storage Materials	WED	AM	A221	59
On-Demand Alternative Nuclear Waste Storage Materials and New Imaging Neutron Microscopy Technique for Nuclear Waste Storage Glass Corroded in Aqueous Solution	FRI	AM	OND	112
Thermodynamics of Materials in Extreme Environments				
Thermodynamics of Nuclear Materials and Minerals	MON	AM	A221	24
Thermodynamics and Stabilities of Alloys and Ceramics	MON	PM	A221	37
Poster Session	TUE	PM	EH B	76
On-Demand: Thermodynamics and Stabilities of Alloys and Ceramics	FRI	AM	OND	114
On-Demand: Thermodynamics of Nuclear Materials and Minerals	FRI	AM	OND	115
Modeling				
Multi Scale Modeling of Microstructure Deformation in Material Processing				
Multi Scale Modeling of Microstructure Deformation in Material Processing	MON	AM	A122	21
On-Demand Oral Session	FRI	AM	OND	104
Phonon Properties of Materials: Modeling and Experimentation				
On-Demand Oral Presentations	FRI	AM	OND	108
Late News Poster Session				
Modeling	TUE	PM	EH B	77


Program At A Glance

Topic Area/Symposium	Date	Time	Room	Page
Nanomaterials				
Controlled Synthesis, Processing, and Applications of Structural and Functional	<u>Nanomaterials</u>			
1D Nanostructures	MON	PM	B240/241	32
Poster Session	TUE	AM	EH B	71
Nanocomposites & 2D Materials	TUE	PM	B240/241	43
Nanoparticles & Nanocomposites I	WED	AM	B240/241	53
Nanoparticles & Nanocomposites II	WED	PM	B240/241	64
On-Demand Oral Presentations	FRI	AM	OND	92
On-Demand Poster Presentations	TUE	AM	OND	93
Mechanistic Insights into the Synergistic Properties of Nanocomposites				
On-Demand Oral Presentations	FRI	AM	OND	104
On-Demand Poster Presentations	FRI	AM	OND	104
Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry			<u> </u>	
Session I	MON	AM	B242/243	22
On-Demand Oral Presentations	FRI	AM	OND	105
Late News Poster Session	110	7 (1-1	OND	1 100
Nanomaterials	TUE	AM	EH B	72
Processing and Product Manufacturing	TOL	7 (1-1	LITE	, _
13th International Symposium on Green and Sustainable Technologies for Mater	rials Manufactu	ring and Dr	ocessing	
Sustainable Manufacturing of Ceramics	MON	AM	A212	10
Novel Approaches to Sustainable Manufacturing I	MON	PM	A212	24
Poster Session	TUE	PM	EH B	73
	TUE	PM	A212	38
Novel Approaches to Sustainable Manufacturing II	WED	PM PM	OND	79
On-Demand Novel Approaches to Sustainable Manufacturing	_ WED	PIVI	UND	/ /9
Advances in Surface Engineering Poster Session	THE	DM	FILD	74
	TUE WED	PM AM	EH B A214	74 52
Advances in Surface Engineering		AM	OND	89
On-Demand Advances in Surface Engineering	FRI	†		1
On-Demand Poster Presentations	FRI	AM	OND	90
Development of Light Weight Alloys and Composites	MONI		A 21.4	10
Microstructure and Properties: Composites I	MON	AM	A214	18
Microstructure and Properties: Composites II	MON	PM	A214	33
Microstructure and Properties: Composites III	TUE	PM	A214	43
On-Demand Oral Presentations	FRI	AM	OND	94
Light Metal Technology	1			
Magnesium and Joining Technology	MON	AM	A213	21
Forming Technology	MON	PM	A213	35
On-Demand Oral Presentations	FRI	AM	OND	102
Powder Metallurgical Components in High Performance Applications		T		T
Session I	TUE	PM	A213	47
On-Demand Oral Presentations	FRI	AM	OND	109
Processing and Performance of Materials Using Microwaves, Electric and Magne- Work: The Rustum Roy Symposium	etic Fields, Ultra	asound, Las	sers, and Mecha	ınical
Session I	MON	AM	B233	23
On-Demand Oral Presentations	FRI	AM	OND	112
Synthesis, Characterization, Modeling and Applications of Functional Porous Ma				
Poster Session	TUE	PM	EH B	75
Functional Porous Materials	WED	PM	A212	68
On-Demand Oral Session: Functional Porous Materials	FRI	AM	OND	113
Late News Poster Session	1 131	/ / // /		110

Topic Area/Symposium	Date	Time	Room	Page		
Special Topics						
ACerS Education and Professional Development Symposium						
Introduction to Education and Professional Development Opportunities	MON	AM	B142/143	10		
ACerS Robert B. Sosman Award Symposium: Bridging the Gap between Atomistic	and Continu	um Approa	ches to Interface	Science		
Sosman I	WED	AM	B130	48		
Sosman II	WED	PM	B130	60		
Curricular Innovations and Continuous Improvement of Academic Programs (and Satisfying ABET along the Way): The Elizabeth						
Judson Memorial Symposium	1	,		,		
Curricular Innovations and Accreditation	MON	AM	B144/145	18		
Course Innovations	MON	PM	B144/145	32		
On-Demand Oral Presentations	FRI	AM	OND	93		
Input to the National Strategic Plan for Advanced Manufacturing						
Input to the National Strategic Plan for Advanced Manufacturing	TUE	PM	B130	46		
Online Teaching Best Practices for the COVID Era and Beyond						
On-Demand Oral Presentations	FRI	AM	OND	107		
Research Lightning Talks						
Research Lightning Talks I	MON	PM	B142/143	37		

Key: USB = Union Station Ballroom, OND = On Demand, EH = Exhibit Hall

An examination of research participation, career progression and perceptions across the globe

Available now, visit elsevier.com/connect/ gender-report to download the report.

palladium catalysts thin film nickel foam perovskite crystals glassy carbon III-IV semiconductors

THE ADVANCED MATERIALS MANUFACTURER ® buckyballs additive manufacturing Nd:YAG alternative energy metamaterials He organometallics MOFs 99.999% ruthenium spheres ferrofluid Be Ne surface functionalized nanoparticles S Na Mg ΑI Si CI Ar 3D graphene foam Τi Kr Sc Zn Mn Ga Ca Ge As Se Br MOCVD Υ Nb Mo Tc Ru Rh Ag Cd In Sn Sb Rb Sr Zr Te Xe **AuNPs** dielectrics Rn Cs Ba La Hf Ta W Re Os Hg ΤI Pb Bi Po At ! Ac Rf Sg Bh Hs Mt Ds Ra Cn Nh FΙ Lv Ra Db Mc Ts Oq epitaxial crystal growth silver nanoparticles Pr Ce Nd Pm Sm Eu Gd Tb Dy Но Er Tm Lu Pa U Np Am Cm Bk Cf Es Fm Md quantum dots No Lr mischmetal transparent ceramics cerium oxide polishing powder biosynthetics refractory metals rare earth metals CVD precursors sputtering targets Now Invent deposition slugs endohedral fullerenes flexible electronics gold nanocubes OLED lighting platinum ink laser crystals The Next Generation of Material Science Catalogs tungsten carbide superconductors

graphene oxide ultra high purity materials optical glass pyrolitic graphite Ti-6Al-4V

Over 35,000 certified high purity laboratory chemicals, metals, & advanced materials and a

state-of-the-art Research Center. Printable GHS-compliant Safety Data Sheets. Thousands of

American Elements opens a world of possibilities so you can Now Invent!

carbon nanotubes www.americanelements.com metallocenes

photovoltaics new products. And much more. All on a secure multi-language "Mobile Responsive" platform.

mesoporus silica 99.99999% mercury

spintronics

li-ion battery electrolytes solar energy

In-Person Event: OCTOBER 17-20, 2021 • COLUMBUS, OHIO

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

PROCESSING AND MANUFACTURING

13th Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing — Sustainable Manufacturing of Ceramics

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Surojit Gupta, University of North Dakota; Rajiv Asthana, University of Wisconsin; Hisayuki Suematsu, Nagaoka University of Technology; Mritunjay Singh, Ohio Aerospace Institute; Enrico Bernardo, University of Padova; Yiquan Wu, Alfred University; Zhengyi Fu, Wuhan University of Technology; Allen Apblett, Oklahoma State University; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology

Monday AM | October 18, 2021 A212 | Greater Columbus Convention Center

Session Chairs: Allen Apblett, Oklahoma State University; Luca Masi, Ansys Inc.

8:00 AM

The Use of Waste Materials for the Manufacture of Ceramic Water Filters in Marginalized Communities: Ian Nettleship¹; Chuyuan Zheng¹; ¹University of Pittsburgh

8:20 AM Invited

Single Source Precursors for Lanthanum Phosphates: Allen Apblett¹; Mha Albqmi¹; ¹Oklahoma State University

8:50 AM

Bandgap Engineering of Epitaxial â-(AlxGa1-x)2O3 Films Grown via the Spin-coating Method: *Iva Milisavljevic*¹; Yiquan Wu¹; ¹Alfred University

9:10 AM

Development of Energy Efficient Solid-state Material Processing Technologies for Sustainable Manufacturing: Kumar Kandasamy; Enabled Engineering

9:30 AM

Green Method for Preparation of Inorganic Green Pigments: Allen Apblett¹; Travis Reed¹; ¹Oklahoma State University

ARTIFICIAL INTELLIGENCE

Accelerating Materials Science with Big Data and Machine Learning — Session I

Program Organizers: Huan Tran, Georgia Institute of Technology; Muratahan Aykol, Toyota Research Institute

Monday AM | October 18, 2021 A123 | Greater Columbus Convention Center

Session Chair: Huan Tran, Georgia Institute of Technology

8:00 AM Invited

Considerations for Interpretability, Reliability, And Data-efficiency in Machine Learning Properties of Solid-state Materials: *Christopher Sutton*¹; ¹University of South Carolina

8:40 AM Invited

Searching for New Ferroelectric Materials Browsing a Highthroughput Phonon Database: Maksim Markov¹; Louis Alaerts²; Henrique Miranda¹; Guido Petretto¹; Wei Chen¹; Janine George¹; Eric Bousquet³; Philippe Ghosez³; Gian-Marco Rignanese¹; Geoffroy Hautier⁴; ¹UCLouvain; ²Dartmouth College; ³Université de Liège; ⁴Dartmouth

9:20 AM

Slip Band Characterization with Microtensile Testing Using Digital Image Processing: Anthony Lombardi¹; Elim Schenck¹; Subhasish Malik¹; Ajit Achuthan¹; Sean Banerjee¹; Natasha Banerjee¹; ¹Clarkson University

9:40 AM

Materials Graph Ontology for Improving the Standardization and Utilization of Materials Data: *Sven Voigt*¹; Surya Kalidindi¹; ¹Georgia Institute of Technology

SPECIAL TOPICS

ACerS Education and Professional Development Symposium — Introduction to Education and Professional Development Opportunities

Sponsored by: ACerS Education and Professional Development Council

Program Organizers: Jessica Rimsza, Sandia National Laboratories; Yolanda Natividad, American Ceramic Society; Ashley Hilmas, Air Force Research Laboratory

Monday AM | October 18, 2021 B142/143 | Greater Columbus Convention Center

Session Chairs: Jessica Rimsza, Sandia National Laboratories; Ashley Hilmas, Air Force Research Laboratory

8:00 AM

Grad School: An Entrée into the Knowledge Creation Enterprise: Frank Zok¹; ¹University of California, Santa Barbara

8:30 AM

Individual Benefits of Diversity in the Workplace: Ryan McCarty¹; Victoria Christensen²; ¹University of California Irvine; ²University of California Santa Barbara

9:00 AM

The Materialism Podcast: A New Medium for Materials Science Education: Taylor Sparks¹; Andrew Falkowski¹; ¹University of Utah

9:30 AM

Professional Development Opportunities with The American Ceramic Society: $Mark\ Mecklenborg^{1}$; 1 The American Ceramic Society

10:00 AM Break

10:20 AM

Real Innovation in the 21st Century – How Can Business Do It?: Cullen Hackler¹; ¹PEI

10:50 AM Panel Discussion Experiences with EPDC and ACerS

SPECIAL TOPICS

ACerS/EPDC: Arthur L. Friedberg Ceramic Engineering Tutorial and Lecture

Sponsored by: ACerS/Education and Professional Development Council

Monday AM | October 18, 2021 B130 | Greater Columbus Convention Center

9:00 AM Invited

Environmental Barrier Coatings – Enabling Materials for Extreme Environments: Elizabeth Opila¹, ¹University of Virginia

ADDITIVE MANUFACTURING

Additive Manufacturing Modeling and Simulation: Microstructure, Mechanics, and Process — AM Modeling - Microstructures & Defects

Sponsored by: TMS Computational Materials Science and Engineering Committee

Program Organizers: Jing Zhang, Indiana University – Purdue University Indianapolis; Brandon McWilliams, US Army Research Laboratory; Li Ma, Johns Hopkins University Applied Physics Laboratory; Yeongil Jung, Changwon National University

Monday AM | October 18, 2021 A113 | Greater Columbus Convention Center

Session Chairs: Jing Zhang, Indiana University - Purdue University Indianapolis; Brandon McWilliams, CCDC Army Research Laboratory; Li Ma, Johns Hopkins University Applied Physics Laboratory; Yeon-Gil Jung, Changwon National University

8:00 AM

Spattering and Associated Pore Formation Modeling for Laser Powder Bed Fusion of Inconel 718: *Qian Chen*¹; chaitanya Vallabh¹; Albert To¹; Xiayun Zhao¹; ¹University of Pittsburgh

8:20 AM

Mitigating Stray Grain Nucleation during the Laser Powder Bed Fusion of Single Crystal CMSX-4: Runbo Jiang¹; Zhongshu Ren²; Tao Sun²; Anthony Rollett¹; ¹Carnegie Mellon University; ²University of Virginia

8:40 AM

Cellular Automaton Simulation of Three-dimensional Microstructure Evolution during Powder Bed Fusion Additive Manufacturing: Michael Moodispaw¹; Cheng Gu¹; Alan Luo¹; Qigui Wang²; ¹Ohio State University; ²General Motors

9:00 AM

A Computational Approach for Establishing Microstructure-property Relationships for Additively Manufactured IN718: *An Nguyen*¹; Jason Mayeur¹; ¹The University of Alabama in Huntsville

9:20 AM

A Microstructure-informed Multiscale Computational Model for Additively Manufactured (AM) Metals and Alloys: Chamara Herath¹; Ajit Achuthan¹; ¹Clarkson University

9.40 AM

Multiscale Material Modeling of Laser Powder Bed Fusion Additive Manufacturing Soft Magnetic Composites: Li Ma¹; Caleb Andrew²; Ryan Carter¹; Ian McCue¹; Joe Sopcisak¹; Mitra Taheri²; ¹Johns Hopkins University Applied Physics Laboratory; ²Johns Hopkins University

10:20 AM Break

10:40 AM

CFD Simulations for Additive Manufacturing: *Pareekshith Allu*¹; ¹Flow Science Inc.

11:00 AM

Comparison of Commercial Additive Manufacturing Simulation Tools for Full Build Analysis: Adam Gershen¹; Charles Fisher¹; ¹Naval Surface Warfare Center, Carderock Division

ADDITIVE MANUFACTURING

Additive Manufacturing of Ceramic-based Materials: Process Development, Materials, Process Optimization and Applications — Session I: Extrusion-based AM

Sponsored by: ACerS Engineering Ceramics Division, ACerS Basic Science Division, ACerS Manufacturing Division

Program Organizers: Xuan Song, University of Iowa; Lei Chen, University of Michigan-Dearborn; Xiangyang Dong, Missouri University of Science and Technology; Yiquan Wu, Alfred University; Paolo Colombo, University of Padova; Rajendra Bordia, Clemson University; Long-Qing Chen, Pennsylvania State University

Monday AM | October 18, 2021 A112 | Greater Columbus Convention Center

Session Chairs: Rajendra Bordia, Clemson University; Xuan Song, University of Iowa

8:00 AM Invited

A Review of Extrusion-based AM via Robocasting: Joe Cesarano¹; ¹Robocasting Enterprises

8:30 AM

Extrusion-based Additive Manufacturing of Silicon Carbide: Ruoyu Chen¹; Adam Bratten¹; *Joshua Rittenhouse*¹; Haiming Wen¹; ¹Missiouri University of Science and Technology

8:50 AM

Highly Loaded Aqueous Silicon Carbide Suspensions for Direct Ink Writing: Tess Marconie¹; Kyle Cox¹; Jeffrey Youngblood¹; Rodney Trice¹; ¹Purdue University

9:10 AM

The Influence of Print Layer Orientation on Silicon Carbide Formed via Direct Ink Writing: Kyle Cox¹; Tess Marconie¹; Jeffrey Youngblood¹; Rodney Trice¹; ¹Purdue University

9:30 AM

Examining the Changes in Micro-mechanical Properties of 3D Printed Cement Paste Using Grid Nanoindentation Coupled with SEM/EDS: Michael Kosson¹; Lesa Brown¹; Florence Sanchez¹; ¹Vanderbilt University

9:50 AM Invited

Additive Manufacturing of Ceramics for Aerospace Applications: Lisa Rueschhoff¹; William Costakis¹; Connor Wyckoff¹; Matthew Dickerson¹; Michael Cinibulk¹; ¹Air Force Research Laboratory

10:20 AM Break

10:40 AM

Out of the Lab: 3D Printing on Non-ideal Surfaces: *Domenic Cipollone*¹; Javier Mena¹; Konstantinos Sierros¹; Edward Sabolsky¹; ¹West Virginia University

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Microstructure, Properties and Alloy Development — Al-based Alloys

Program Organizers: Prashanth Konda Gokuldoss, Tallinn University of Technology; Juergen Eckert, Erich Schmid Institute of Materials Science; Zhi Wang, South China University of Technology

Monday AM | October 18, 2021 A115 | Greater Columbus Convention Center

Session Chair: Jovid Rakhmonov, Northwestern University

8:00 AM

Additively Manufactured ALSi10Mg Thin Fins via Laser Powder Bed Fusion: A Parametric Analysis: Adnen Mezghani¹; Abdalla Nassar²; Timothy Simpson¹; ¹Pennsylvania State University; ²Applied Research Laboratory

8:20 AM

Effect of Direct Metal Laser Sintering Build Parameters on Defects and Ultrasonic Fatigue Performance of Additively Manufactured AlSi10Mg: Robert Rhein¹; Qianying Shi²; Srinivasan Arjun Tekalur¹; J Wayne Jones²; Jason Carroll¹; ¹Eaton Corporation; ²University of Michigan

8:40 AM

Effects of Process Parameters, Post-processing, and Defects on Tension and Fatigue Properties of LPBF AlSi10Mg: Austin Ngo¹; Collin Sharpe¹; Varthula Jayasekera²; Brett Conner²; Holly Martin²; Christopher Tuma¹; John Lewandowski¹; ¹Case Western Reserve University; ²Youngstown State University

9:00 AM

Effects of Process Parameters and Defects on S-N Fatigue of LPBF AlSi10Mg: Collin Sharpe¹; Austin Ngo¹; Christopher Tuma¹; Michael Shinohara¹; Holly Martin²; John Lewandowski¹; ¹Case Western Reserve University; ²Youngstown State University

9:20 AM

Process Optimization and Microstructural Analysis for Laser Powder Bed Fusion of AlMgZr Alloy: Nellie Pestian¹; Thomas Carmody¹; Daniel Satko¹; Evan Diewald²; Christian Gobert²; Anthony Rollett²; Jack Beuth²; Ayman Salem¹; Nam Phan³; Jan Kasprzak³; ¹MRL Materials Resources LLC; ²Carnegie Mellon University; ³Naval Air Systems Command

9:40 AM

Characterization of Near-eutectic Al-Ce with Sc and Zr Microadditions Processed by Rapid Laser Remelting: Jovid Rakhmonov¹; Clement Ekaputra¹; David Weiss²; David Dunand¹; ¹Northwestern University; ²Eck Industries, Inc.

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals:

ICME Gaps: Material Property and Validation Data to Support Certification — Data Needs for Simulation: Material Property and Validation Data to Support Certification

Sponsored by: TMS: Integrated Computational Materials Engineering Committee, TMS Additive Manufacturing Bridge Committee

Program Organizers: Joshua Fody, NASA Langley Research Center; Edward Glaessgen, NASA Langley Research Center; Christapher Lang, NASA Langley Research Center; Greta Lindwall, KTH Royal Institute of Technology; Michael Sansoucie, NASA Marshall Space Flight Center; Mark Stoudt, National Institute of Standards and Technology

Monday AM | October 18, 2021 A114 | Greater Columbus Convention Center

Session Chairs: Christapher Lang, NASA Langley Research Center; Joshua Fody, NASA

8:00 AM Introductory Comments

8:10 AM Keynote

ICME Gaps for Additive Manufacturing of Metals: Anthony Rollett¹; ¹Carnegie Mellon University

8:50 AM

High Temperature Material Property Data and Challenges to Thermal Process Model Predictions and In-Situ/Ex-Situ Measurements for Metallic Additive Manufacturing: Joshua Fody¹; Samuel Hocker¹; Joseph Zalameda¹; Wesley Tayon¹; ¹NASA Langley Research Center

9:10 AM

Determining Data Requirements to Quantify Porosity in the Laser Powder Bed Fusion Process: Mahya Shahabi¹; Caitlin Kean¹; Adrianna Yuen¹; Anthony Rollett²; Sneha Prabha Narra²; ¹Worcester Polytechnic Institute; ²Carnegie Mellon University

9:30 AM

Methods for Improved Part-scale Thermal Process Simulations in Laser Powder Bed Fusion: Seth Strayer¹; Florian Dugast¹; Alaaeldin Olleak¹; Shawn Hinnebusch¹; Joshua Fody²; Albert To¹; ¹University of Pittsburgh; ²National Aeronautics and Space Administration

9:50 AM

Experimental and Numerical Investigation of Pressureless Sintering for Binder Jetted Metal Parts: Kaiwen Zhang¹; Wei Zhang¹; Ryan Brune¹; Xu Zhang¹; Edward Herderick¹; ¹Ohio State University

ADDITIVE MANUFACTURING

Additive Manufacturing: Advanced Characterization for Industrial Applications — In-situ and Operando Techniques

Sponsored by: TMS Advanced Characterization, Testing, and Simulation Committee, TMS Additive Manufacturing Bridge Committee

Program Organizers: Nadia Kouraytem, Utah State University; Fan Zhang, National Institute of Standards and Technology; Lianyi Chen, University of Wisconsin-Madison

Monday AM | October 18, 2021 A121 | Greater Columbus Convention Center

Session Chair: Nadia Kouraytem, Utah State University

8:00 AM Introductory Comments

8:10 AM

Characterizing Powder Spreading Dynamics in Powder Bed Fusion AM Process by High-speed X-ray Imaging: Luis Escano¹; Lianyi Chen¹; ¹University of Wisconsin - Madison

8:30 AM

Domain Adaption for Enhanced X-ray CT Reconstruction of Metal Additively Manufactured Parts: Amir Ziabari²; Abhishek Dubey²; Singanallur Venkatakrishnan¹; Michael Sprayberry¹; Curtis Frederick³; Paul Brackman³; Philip Bingham¹; Ryan Dehoff¹; Vincent Paquit¹; ¹Oak Ridge National Laboratory; ²NIH; ³Carl Zeiss Industrial Metrology, LLC

8:50 AM

In-situ Quality Monitoring of PBF AM Parts: Bernard Revaz¹; ¹SENSIMA Inspection/AMIquam SA

9:10 AM

Understanding the Keyhole Dynamics in Laser Welding Using Timeresolved X-ray Imaging Coupled with Computer Vision and Data Analytics: Joseph Aroh¹; Jongchan Pyeon¹; Runbo Jiang¹; Benjamin Gould²; Andy Ramlatchan³; Anthony Rollett¹; ¹Carnegie Mellon University; ²Argonne National Laboratory; ³NASA Langley Research Center

ADDITIVE MANUFACTURING

Additive Manufacturing: Alloy Design to Develop New Feedstock Materials III — Modeling and Experiments

Sponsored by: TMS Alloy Phases Committee

Program Organizers: Aurelien Perron, Lawrence Livermore National Laboratory; Joseph McKeown, Lawrence Livermore National Laboratory; Manyalibo Matthews, Lawrence Livermore National Laboratory; Peter Hosemann, University of California, Berkeley; Christian Leinenbach, Empa, Swiss Federal Laboratories for Materials Science and Technology

Monday AM | October 18, 2021 A111 | Greater Columbus Convention Center

Session Chair: Aurelien Perron, Lawrence Livermore National Laboratory

10:00 AM

Insights into Additive Manufacturability and Microstructure Evolution from Simple Analytical Models: Charles Smith¹; Madeleine Johnson¹; Olivia DeNonno¹; Luc Hagen¹; Daniel Gifford¹; Juan Gonzalez¹; Anthony Petrella¹; Zhenzhen Yu¹; Amy Clarke¹; Jonah Klemm-Toole¹; ¹Colorado School of Mines

10:20 AM Invited

A High-throughput Method to Define New Feedstock Process Parameters in Additive Manufacturing: Zahabul Islam¹; Ankur Agrawal¹; Behzad Rankouhi¹; Frank Pfefferkorn¹; Dan Thoma¹; ¹University of Wisconsin

ADDITIVE MANUFACTURING

Additive Manufacturing: Processing, Microstructure and Material Properties of Titanium-based Materials — Session I

Sponsored by: TMS Titanium Committee

Program Organizers: Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Peeyush Nandwana, Oak Ridge National Laboratory; Rongpei Shi, Lawrence Livermore National Laboratory

Monday AM | October 18, 2021 A120 | Greater Columbus Convention Center

Session Chair: Ola Harrysson, North Carolina State University

8:00 AM

A Machine Learning Model to Predict Tensile Properties of Ti6Al4V Parts Prepared by Selective Laser Melting with Hot Isostatic Pressing: Zhaotong Yang¹; Mei Yang¹; Richard Sisson¹; Yanhua Li²; Jianyu Liang¹; ¹Worcester Polytechnic Institute

8:20 AM

An Infill Strategy for Eliminating Local Hot Spots in Ti64 Laser Powder Bed Fusion: Evan Diewald¹; Christian Gobert¹; Jack Beuth¹; ¹Carnegie Mellon University

In-Person Event: OCTOBER 17-20, 2021• COLUMBUS, OHIO

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

8:40 AM

Effect of Powder Feedstock Size on the Characteristics of Ti6Al4V Lightweight Features from Laser Powder Bed Fusion Additive Manufacturing: An Experimental Study: Sayed Saghaian¹; Jonah Hermes¹; Li Yang¹; ¹University of Louisville

9:00 AM Invited

Processing to Microstructure to Properties in Titanium: Anthony Rollett¹; ¹Carnegie Mellon University

9:40 AM

Effects of Process Parameters on Fatigue Behavior and Defect Characteristics in LPBF Ti-6Al-4V: Austin Ngo¹; David Scannapieco¹; Hunter Taylor²; Ryan Wicker²; Joseph Pauza³; Anthony Rollett³; John Lewandowski¹; ¹Case Western Reserve University; ²University of Texas at El Paso; ³Carnegie Mellon University

10:00 AM Break

10:20 AM

Fatigue Fracture Surface Defect Quantification for LPBF Additively Manufactured Ti-6Al-4V: David Scannapieco¹; Austin Ngo¹; Collin Sharpe¹; Hunter Taylor¹; Ryan Wicker¹; Joseph Pauza¹; Anthony Rollett¹; John Lewandowski¹; ¹Case Western Reserve University

10:40 AM

Mechanical Strength and Fatigue Performance of Laser Powder Bed Fusion Processed Hydride-dehydride Ti-6Al-4V Powders: Mohammadreza Asherloo¹; Melody Delpazir¹; Ziheng Wu²; Muktesh Paliwal³; Anthony Rollett²; Amir Mostafaei¹; ¹Illinois Institute of Technology; ²Carnegie Mellon University; ³Kymera International - Reading Alloys

ENERGY

Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments — Fusion Materials and Metals

Sponsored by: TMS Nuclear Materials Committee

Program Organizers: Cody Dennett, Idaho National Laboratory; Samuel Briggs, Oregon State University; Christopher Barr, Naval Nuclear Laboratory; Michael Short, Massachusetts Institute of Technology; Janelle Wharry, Purdue University; Cheng Sun, Idaho National Laboratory; Caitlin Taylor, Los Alamos National Laboratory; Emily Aradi, University of Manchester; Khalid Hattar, Sandia National Laboratories

Monday AM | October 18, 2021 A215 | Greater Columbus Convention Center

Session Chairs: Michael Short, Massachusetts Institute of Technology; Jason Trelewicz, Stony Brook University

8:00 AM Invited

Real-time Thermal Oxidation Process of PFM Tungsten Under Fusion-relevant Conditions Revealed by In-situ Environmental TEM: Maanas Togaru¹; Rajat Sainju¹; Lichun Zhang¹; Weilin Jiang²; *Yuanyuan Zhu¹*; ¹University of Connecticut; ²Pacific Northwest National Laboratory

8:20 AM Invited

Uncovering the Effect of Grain Boundary Dopants on Irradiation Induced Grain Growth Through In Situ Microscopy: Jason Trelewicz¹; William Cunningham¹; Danny Edwards²; Yuanyuan Zhu³; ¹Stony Brook University; ²Pacific Northwest National Laboratory; ³University of Connecticut

8:40 AM

Femtosecond Laser Induced Surface Damages in Tungsten and Tungsten Carbide in High Heat Flux Conditions: Minsuk Seo¹; Shukai Yu¹; Venkatraman Gopalan¹; Leigh Winfrey¹; ¹The Pennsylvania State University

9:00 AM Invited

Characterization of Materials Exposed to Coupled Nuclear Environments Using Positron Annihilation Spectroscopy and Electrical Impedance Spectroscopy: Peter Hosemann¹; Rasheed Auguste¹; Farida Selim²; Oskar Linke³; Maik Butterling³; Hong Chan⁴; Junsoo Han⁴; Jie Qiu¹; John Scully⁴; Ryan Schoell⁵; Djamel Kaoumi⁵; ¹University of California, Berkeley; ²Bowling Green University; ³Helmholz Zentrum Dresden Rossendorf; ⁴University of Virginia; ⁵North Carolina State University

9:20 AM

Richtmyer-Meshkov Instability Testing and Accompanying Analysis: A Surface Sensitive Approach to High Strain Rate Testing of Irradiated Material without Bulk Volumes: Calvin Lear¹; David Jones¹; Daniel Martinez¹; Jeremy Payton¹; Michael Prime¹; Saryu Fensin¹; ¹Los Alamos National Laboratory

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Coatings for Wear and Corrosion Protection — Session I

Program Organizers: Evelina Vogli, Lm Group Holdings Inc.; Virendra Singh, Schlumberger

Monday AM | October 18, 2021 A220 | Greater Columbus Convention Center

Session Chairs: Evelina Vogli, LM Group Holdings; Virendra Singh, Schlumberger

8:00 AM

New Multidisciplinary Approach for Investigating Hot Corrosion Behavior in Thermal Barrier Coatings: *Guanlin Lyu*¹; JunSeong Kim¹; SeungCheol Yang¹; Yeon-Gil Jung¹; ¹Changwon National University

8:20 AM

Aerosol Cold Spray Technology for Ceramic and Metal Coating Deposition: Volf Leshchynsky¹; Gregorz Kubicki²; Joanna Chojnacka²; Ahmed Elseddawy¹; Roman Maev¹; ¹IDIR; ²Lukasiewicz- INOP

8:40 AM

Combinatorial PVD Coatings on SiC-SiC for Boiling Water Reactor Conditions: Ryan Schoell¹; Joey Kabel²; Sebastian Lam³; Amit Sharma⁴; Petho Laszlo⁴; Peter Hosemann³; Djamel Kaoumi¹; ¹North Carolina State University; ²University of California Berkeley; ³University of California Berkeley; ⁴Empa

9:00 AM

Amorphous Based PTA Weldings for Icy Surfaces: Evelina Vogli¹; Liang Hong²; Yan Chen²; John Kang¹; Rick Salas¹; ¹LM Group Holdings Inc.; ²Texas A&M University

9:20 AM

The Environmental Performance of Nitrided Corrosion Resistance Alloys in a Water – Glycol Hydraulic Fluid: Virendra Singh¹; Manuel Marya¹; ¹Schlumberger

9:40 AM

Properties of Ni-P-ZrC Nanocomposite Coatings for Corrosion Protection in the Oil and Gas Industry: Abdul Shakoor¹; Osama Fayyaz¹; Ahmed Radwan¹; Anwarul Hasan¹; Mostafa Sleim¹; Aboubakr Abdullah¹; ¹Qatar University

10:00 AM Break

10:20 AM

Effects of Laser Remediation Treatments on Environmentallyassisted Cracking of 5xxx Aluminum Alloys and Ship Plates: *Yang Liu*¹; Benjamin Palmer¹; John Lewandowski¹; ¹Case Western Reserve University

10:40 AM

Investigations on the Effect of Open Atmosphere Laser-nitriding on Surface Mechanical and Elevated Temperature Fretting Wear Properties of A356-Alloy: Achyuth Kulkarni¹; Palani I.A.¹; Jayaprakash Murugesan¹; ¹||T Indore

IRON AND STEEL (FERROUS ALLOYS)

Advancements in Steel Structural Refinement — Advancements in Steel Structural Refinement

Sponsored by: AIST: Metallurgy—Processing, Products and Applications Technology Committee

Program Organizers: Charles Enloe, CBMM North America; Emmanuel De Moor, Colorado School of Mines; Jianfeng Wang, General Motors Global Research and Development; Jose Rodriguez-Ibabe, CEIT and TECNUN; Steven Jansto, Research and Development Resources

Monday AM | October 18, 2021 A211 | Greater Columbus Convention Center

Session Chair: To Be Announced

10:00 AM

Maximizing Strengthening Mechanisms in Continuously-annealed HSLA Steel: Charles Enloe¹; Fabio D'Aiuto²; Hardy Mohrbacher³; ¹CBMM North America; ²CBMM Europe; ³NiobelCon bvba

10:30 AM

Microalloyed Steel Precipitate Characterization by Automated TEM Image and EDS Analysis: Roger Maddalena¹; ¹Thermo Fisher Scientific

11:00 AM

The Capability of Severe Plastic Deformation to Achieve High Strength and Toughness in Two High Strength Steel Alloys, Austenitic FeMnAl and Martensitic AF9628: Matthew Vaughan¹; Sezer Picak¹; Cafer Acemi¹; Richard Harris²; Peyman Samimi¹; Sean Gibbons²; Rachel Abrahams²; Robert Barber¹; Ibrahim Karaman¹; ¹Texas A&M University; ²Air Force Research Laboratory

ELECTRONIC AND MAGNETIC MATERIALS

Advances in Dielectric Materials and Electronic Devices — Processing/Analysis of Dielectrics & Piezoelectrics

Sponsored by: ACerS Electronics Division

Program Organizers: Amar Bhalla, University of Texas; Ruyan Guo, University of Texas at San Antonio; Rick Ubic, Boise State University; Matjaž Spreitzer, Jožef Stefan Institute

Monday AM | October 18, 2021 B235 | Greater Columbus Convention Center

Session Chair: Amar Bhalla, University of Texas at San Antonio

8:00 AM

Unique [Ga, Ta]:BaTiO₃ Relaxor Based On Nanoscale Dipole Engineering: Kaijie Ning¹; Holly Shulman¹; Walter Schulze¹; Steven Tidrow¹; ¹Alfred University

8:20 AM

Zinc Oxide (ZnO): Inkjet Printing and Post-Processing Evaluation for Piezoelectric Applications: Sean Garnsey¹; Paul Flynn¹; Bryan Gamboa¹; Amar Bhalla¹; Ruyan Guo¹; ¹ECE/ COE, University of Texas at San Antonio

8:40 AM

Electroceramics with Ferroelectric Grain Boundaries via Cold Sintering: Javier Mena Garcia¹; Sinan Dursun¹; Kosuke Tsuji¹; Sun Hwi Bang¹; Zhongming Fan¹; Arnaud Ndayishimiye¹; Clive Randall¹; ¹Penn State University

9:00 AM

Production of High Temperature 3D Printed Ceramics for Sensing Applications: Eleanore Rogenski¹; Victoria Adams¹; Eric MacDonald²; Matthew Mullin³; Ian Small³; Pedro Cortes¹; ¹Youngstown State University; ²The University of Texas at El Paso; ³NASA

9:20 AM

Effect of Deposition Humidity on the Properties of Solutionprocessed Indium Tin Oxide Films: Sivaramakrishnan Sethuraman¹; Rosario Gerhardt¹; ¹Georgia Institute of Technology

IRON AND STEEL (FERROUS ALLOYS)

Advances in Ferrous Metallurgy — Advances in Ironmaking, Steelmaking, and Casting

Sponsored by: AIST Metallurgy—Processing, Products and Applications Technology Committee

Program Organizers: Daniel Baker, General Motors Corporation; Emmanuel De Moor, Colorado School of Mines; Kishlay Mishra, Nucor Castrip Arkansas LLC; Lijia Zhao, ArcelorMittal Global R&D

Monday AM | October 18, 2021 A210 | Greater Columbus Convention Center

Session Chair: To Be Announced

8:00 AM

Cost Modeling and Life Cycle Analysis of Low-Emissions Iron Production: Muntasir Shahabuddin¹; Adam Powell¹; Yan Wang¹; Nikolaos Kazantzis¹; Brajendra Mishra¹; ¹Worcester Polytechnic Institute

8:20 AM

Thermodynamics and Kinetics of Coke Breeze Combustion Under Different Oxygen Content in Sintering Process: Dongqing Wang¹; ¹Shougang Group

8:40 AM

The Study and Optimization of Calcium Flux for Self-fluxed Pellets: Xiangjuan Dong¹; Wei Wu¹; Yu Cao²; Kai Wang²; Gele Qing³; Ming Li²; Wenwang Liu²; ¹Central Iron and Steel Research Institute; ²Shougang Jingtang United Iron & Steel Co, Ltd; ³Shougang Research Institute of Technology of Shougang Group Co., Ltd.

9:00 AM

Structure Optimizations of Submerged Entry Nozzle in a Steel Slab Continuous Casting Mold: Yushi Tian¹; Lijun Xu²; Shengtao Qiu²; Rong Zhu¹; ¹University of Science and Technology Beijing; ²Central Iron & Steel Research Institute

9:20 AM

Impact of Alloy Composition on the Hot Ductility of Steel during Continuous Casting: Alyssa Stubbers¹; Thomas Balk¹; ¹University of Kentucky

ARTIFICIAL INTELLIGENCE

Al for Big Data Problems in Advanced Imaging, Materials Modeling and Automated Synthesis — Accelerating Discovery of Materials

Sponsored by: TMS: Computational Materials Science and Engineering Committee

Program Organizers: Mathew Cherukara, Argonne National Lab; Badri Narayanan, University of Louisville; Subramanian Sankaranarayanan, University of Illinois (Chicago)

Monday AM | October 18, 2021 A124 | Greater Columbus Convention Center

Session Chair: To Be Announced

8:00 AM Invited

De Novo Inverse Design of Nanoporous Materials by Machine Learning: Mathieu Bauchy¹; ¹University of California, Los Angeles

8:30 AM Invited

Tuning Optoelectronic Properties of Semiconductors with First Principles Modeling and Machine Learning: Arun Kumar Mannodi Kanakkithodi¹; Maria Chan²; ¹Purdue University; ²Argonne National Laboratory

9:00 AM

Machine Learning Polymer Property Prediction Models with Polymers Represented as Natural Language: Christopher Kuenneth¹; Rampi Ramprasad¹; ¹Georgia Institute of Technology

9:20 AM Invited

Aluminum Alloy Design Using Physics Informed Machine Learning: Fatih Sen¹; Marat Latypov¹; Heath Murphy¹; Kyle Haines¹; Shruthi Raj¹; Aurele Mariaux²; Sazol Das¹; David Anderson¹; Debdutta Roy¹; Yudie Yuan¹; Vishwanath Hegadekatte¹; ¹Novelis R&D Center, Kennesaw GA; ²Novelis R&D Center, Sierre, Switzerland

9:50 AM

Refinements to the Production of Machine Learning Interatomic Potentials: Jared Stimac¹; Jeremy Mason¹; ¹University of California, Davis

10:10 AM Break

10:30 AM Invited

Discovery of Novel Crystal Structures via Generative Adversarial Networks: *Taylor Sparks*¹; Michael Alverson¹; ¹University of Utah

CERAMIC AND GLASS MATERIALS

Ceramic Matrix Composites — Session I

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command

Monday AM | October 18, 2021 B232 | Greater Columbus Convention Center

Session Chair: Marina Ruggles-Wrenn, Air Force Institute of Technology

8:00 AM

Synchrotron Tomography of SiC/SiC Minicomposites to Observe and Quantify Damage Evolution: *Ashley Hilmas*¹; Andrew Sharits²; Craig Przybyla¹; Robert Goldberg³; Amjad Almansour³; ¹Air Force Research Laboratory; ²UES Inc; ³NASA Glenn Research Center

8:20 AM

Interfacial Fracture Toughness on SiC/SiC CMCs: Oriol Gavalda-Diaz¹; Luc Vandeperre¹; Eduardo Saiz¹; Finn Giuliani¹; ¹Imperial College London

8:40 AM

Developments in Laser-CVD to Produce SiC and Si3N4 Fibers for CMC Reinforcement: Ram Kiran Goduguchinta¹; Joseph Pegna¹; Mark Schaefer¹; Jeff Vervlied¹; ¹Free Form Fibers

9:00 AM

Effectiveness of Mechanical Reinforcement of Carbon Nanotubes on Boron Carbide Through In-situ High Loading Indentation: *Tyler Dolmetsch*¹; Benjamin Boesl¹; Arvind Agarwal¹; Cheng Zhang¹; ¹Florida International University

MATERIALS-ENVIRONMENT INTERACTIONS

Coatings to Protect Materials from Extreme Environments — Environmental and Thermal Barrier Coatings

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Kang Lee, NASA Glenn Research Center; Yutaka Kagawa, The University of Tokyo; Daniel Mumm, University of California, Irvine; Rodney Trice, Purdue University; Emmanuel Boakye, UES Inc.; Valerie Wiesner, NASA Langley Research Center; Edward Gorzkowski, Naval Research Laboratory; Scooter Johnson, Naval Research Laboratory

Monday AM | October 18, 2021 A222 | Greater Columbus Convention Center

Session Chairs: Rodney Trice, Purdue University; Kang Lee, NASA Glenn Research Center

8:00 AM

Break-away Oxidation in Ytterbium Silicate Environmental Barrier Coatings: Kenneth Kane¹; Eugenio Garcia²; Michael Lance¹; Cory Parker¹; Sanjay Sampath²; Bruce Pint¹; ¹Oak Ridge National Laboratory; ²Stony Brook University

8:20 AM

Effects of Topcoat Modifications on Bond Coat Oxidation, Internal Stresses, and Interface Toughness in Multilayer Si/Yb₂Si₂O₇ Environmental Barrier Coatings: Benjamin Herren¹; Chihpin Chuang²; Jonathan Almer²; Kang Lee³; Katherine Faber¹; ¹California Institute of Technology; ²Argonne National Laboratory, Advanced Photon Source; ³NASA Glenn Research Center

8:40 AM

Polymorph Stability and Thermal Expansion Tensors of Mixed and High Entropy Rare Earth Disilicates: Alejandro Salanova¹; Rachel Guarriello¹; Mackenzie Ridley¹; Cormac Toher²; Stefano Curtarolo²; Elizabeth Opila¹; Jon Ihlefeld¹; ¹University of Virginia; ²Duke University

9:00 AM

Evaluation of YbPO₄ as an Environmental Barrier Coating Candidate: *Mackenzie Ridley*¹; Bohuslava McFarland²; Cameron Miller¹; Elizabeth Opila¹; ¹University of Virginia; ²Pratt & Whitney

9:20 AM

Protocol for Selecting Exemplary Silicate Deposit Compositions for Evaluation of Thermal and Environmental Barrier Coatings: Andrew Ericks¹; Frank Zok¹; David Poerschke²; Carlos Levi¹; ¹University of California, Santa Barbara; ²University of Minnesota

9:40 AM

High Temperature Stability and Decomposition of Mixed Oxide and Sulfate CMFAS-type Deposits and Implications for Coating Degradation: *Eeshani Paresh Godbole*¹; Atharva Chikhalikar¹; David Poerschke¹; ¹University of Minnesota

10:00 AM Break

10:20 AM

Na₂SO₄ Interactions with Rare Earth Silicate Environmental Barrier Coatings: Kristyn Ardrey¹; Elizabeth Opila¹; ¹University of Virginia

10:40 AN

Protection of Yttria Stabilized Zirconia (YSZ) Surface from CMAS Attack by Sacrificial Layer of Si3N4: Said Bakkar¹; Elora Zucah¹; Tim Hossain²; Jacob Moldenhauer¹; Ellen Steinmiller¹; Will Flanagan¹; ¹University of Dallas; ²Ceriumlabs

11:00 AM

Understanding Modes of Mixed Deposit-Induced Degradation on Advanced Alloys and Bond Coat Systems: Atharva Chikhalikar¹; Eeshani Godbole¹; David Poerschke¹; ¹University of Minnesota, Twin Cities

SPECIAL TOPICS

Curricular Innovations and Continuous Improvement of Academic Programs (and Satisfying ABET along the Way): The Elizabeth Judson Memorial Symposium — Curricular Innovations and Accreditation

Sponsored by: TMS: Accreditation Committee, TMS: Education Committee

Program Organizers: Alison Polasik, Campbell University; Susan Gentry, University of California, Davis; Jeffrey Fergus, Auburn University; Assel Aitkaliyeva, University of Florida; Kester Clarke, Colorado School of Mines; Subhadra Gupta, University of Alabama; Gregg Janowski, University of Alabama at Birmingham; M. Norton, Washington State University

Monday AM | October 18, 2021 B144/145 | Greater Columbus Convention Center

Session Chair: Kester Clarke, Colorado School of Mines

8:00 AM Introductory Comments

8:05 AM

Changes in ABET Engineering General Criteria: Jeffrey Fergus¹:
Auburn University

8:25 AM

Preparing for an ABET Evaluation – Common Issues: *Jeffrey Fergus*¹; ¹Auburn University

8:45 AM

Universities, DOD Manufacturing Institutes and US Manufacturing-The MEEP Program: Cindy Waters¹; *Jeremy Chang*¹; ¹Carderock Division Naval Surface Warfare Center

9:05 AM

A Survey of the Changes Made for Online Teaching in Materials Science and Engineering Program: Alison Polasik¹; Kester Clarke²; ¹Campbell University; ²Colorado School of Mines

9:25 AM Break

9:40 AM Panel Discussion: Assessment and Accreditation Q&A

PROCESSING AND MANUFACTURING

Development of Light Weight Alloys and Composites

— Microstructure and Properties: Composites I

Program Organizers: Ramasis Goswami, Naval Research Laboratory; Nikhil Gupta, New York University; Tanjore Jayaraman, University of Michigan-Dearborn; Aashish Rohatgi, Pacific Northwest National Laboratory

Monday AM | October 18, 2021 A214 | Greater Columbus Convention Center

Session Chairs: Aashish Rohatgi, PNNL; Ramasis Goswami, NRL

8:00 AM Invited

Development of a High-temperature High Strength Aluminum Alloys by Microstructure Tuning: Kamanio Chattopadhyay¹; Ujjval Bansal¹; Mahander Singh¹; Shyam Sinha¹; Sukla Mondol²; Surendra Makineni¹; ¹Indian Institute of Science; ²NIT Warangal

8:40 AM Invited

A Data-driven Analysis for Selection of Ti-based Alloys for Aircraft Landing Gear Beams and Future Directions: Tanjore Jayaraman¹; Canumalla Ramachandra²; ¹University of Michigan-Dearborn; ²Weldaloy Specialty Forgings

9:20 AM

Existing and Emerging Applications of Machine Learning in Design, Synthesis, and Characterization of Metal Matrix Composites: *Amir Kordijazi*¹; Pradeep Rohatqi¹; ¹University of Wisconsin-Milwaukee

9:40 AM

Energy Efficient Solid-state Alloying and Composite Manufacturing: *Kumar Kandasamy*; ¹Enabled Engineering

10:00 AM Break

10:20 AM Invited

Non-Rule-of-Mixtures Thermal Diffusivity in Core-Shell-based Nanocrystalline Composite Ceramics: James Wollmershauser¹; Kevin Anderson²; Benjamin Greenberg²; Heonjune Ryou¹; Edward Gorzkowski¹; Boris Feigelson¹; ¹U.S. Naval Research Laboratory; ²National Research Council Postdoctoral Research Fellow sited at U.S. Naval Research Laboratory

ENERGY

Energy Materials for Sustainable Development — Energy Harvesting

Sponsored by: ACerS Energy Materials and Systems Division

Program Organizers: Armin Feldhoff, Leibniz University Hannover; Kyle Brinkman, Clemson University; Krista Carlson, University of Utah; Eva Hemmer, University of Ottawa; Nikola Kanas, Institute Biosense, University of Novi Sad; Kjell Wiik, Norwegian University of Science and Technology; Lei Zuo, Virginia Tech; Stephanie Lee, Stevens Institute of Technology; Muhammad Hajj, Stevens Institute of Technology

Monday AM | October 18, 2021 A216 | Greater Columbus Convention Center

Session Chairs: Kyle Brinkmann, Clemson University; Krista Carlson, University of Nevada, Reno

8:00 AM Introductory Comments

8:20 AM Invited

Multi-modal Energy Harvesting-magnetic Field, Vibrations, Heat and Light: Shashank Priya¹, ¹Penn State

8:50 AM Invited

Interfacial Properties in Composite Nano-systems for Energy Harvesting: Alberto Vomiero¹; ¹Lulea University of Technology

9:20 AM

Energy Harvesting Floor from Commercial Cellulosic Materials for Self-powered Wireless Transmission Sensor System: Long Gu¹; ¹University of Wisconsin-Madison

9:40 AM

Implanted Battery-free Direct-current Micro-power Supply from In Vivo Breath Energy Harvesting: $Jun\ Li^{1}$: 1 University of Wisconsin-Madison

10:00 AM Break

10:20 AM

Cost-effective, Penetration/Corrosion-resistant Materials for the Containment of Earth-abundant Molten Chlorides for High-temperature Thermal Energy Storage for Concentrated Solar Power: Liangjuan Gao¹; Elizabeth Laskowksi¹; Saeed Bagherzadeh¹; Mario Caccia¹; Michael Bichnevicius²; Qingzi Zhu²; Mehdi Pishahang²; Robert Cullen³; Kenneth McGowan³; Asegun Henry³; Kenneth Sandhage¹; ¹Purdue University; ²Massachusetts Institute of Technology; ³Westmoreland Advanced Materials, Inc.

10:40 AM

Measurement of Density for Molten Fluoride Salt: Jaewoo Park¹; Jinsuo Zhang¹; ¹Virginia Tech

11:00 AM

Evaluation Recyclable Materials to Manufacture Wind Turbines Blades H-Darrieus: Andres Olivera C.¹; Edwin Chica¹; Henry Colorado¹; ¹Universidad de Antioquia

11:20 AM

Microstructure Prediction of the Laser Additive Manufacturing of Silicon-iron Soft Magnet: Fukang Li¹; Kan Sun¹; Lei Zuo¹; ¹Virginia Tech

CERAMIC AND GLASS MATERIALS

Glasses and Optical Materials: Current Issues and Functional Applications — Dissolution and Mechanical Properties of Amorphous Solids

Sponsored by: ACerS Basic Science Division, ACerS Glass & Optical Materials Division

Program Organizers: Jessica Rimsza, Sandia National Laboratories; Delia Brauer, Otto Schott Institute of Materials Research

Monday AM | October 18, 2021 B231 | Greater Columbus Convention Center

Session Chair: Douglas Meier, McCrone Associates, Inc.

10:00 AM

X-ray Photoelectron Spectroscopy (XPS) for Improved Characterization of Glass Delamination Lamellae: Douglas Meier¹;

¹McCrone Associates, Inc.

10:20 AM

Interactive Corrosion between International Simple Glass (ISG) and Stainless Steel: Chandi Mohanty¹; Xiaolei Guo¹; Huseyin Kaya²; Stephane Gin³; Joseph Ryan⁴; John Vienna⁴; Seong Kim⁵; Jianwei Wang⁶; Jie Lian⁷; Gerald Frankel¹; ¹The Ohio State University; ² The Pennsylvania State University; ³CEA; ⁴Pacific Northwest National Laboratory; ⁵The Pennsylvania State University; ⁶Louisiana State University; ⁷Rensselaer Polytechnic Institute

10:40 AM

Revisiting the Atomic Structure of Glassy Silica by Force-enhanced Atomic Refinement: Mathieu Bauchy¹; ¹University of California, Los Angeles

FUNDAMENTALS AND CHARACTERIZATION

Grain Boundaries, Interfaces, and Surfaces in Ceramics: Fundamental Structure—Property— Performance Relationships — Atomistic Approaches

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division

Program Organizers: Rheinheimer Wolfgang, Forschungszentrum Jülich; Catherine Bishop, University of Canterbury; Shen Dillon, University of California, Irvine; Ming Tang, Rice University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology; Melissa Santala, Oregon State University

Monday AM | October 18, 2021 B244/245 | Greater Columbus Convention Center

Session Chairs: Amanda Krause, University of Florida; Wayne Kaplan, TECHNION

10:00 AM Invited

Hetero-epitaxial Relationships and Atomic Structure at Ag/Ni Interfaces: Dominique Chatain¹; Paul Wynblatt²; Velimir Radmilovic³; Ulrich Dahmen⁴; ¹CNRS; ²Carnegie Mellon University; ³University of Belgrade; ⁴Lawrence Berkeley National Laboratory

10:40 AM

Size-dependent Lattice Contraction in Nano-MnO: *Michael Ramsdell*¹; Jenna Pike²; Syed Khalid³; Siu-Wai Chan¹; ¹Columbia University; ²OxEon Energy, LLC; ³Brookhaven National Laboratory

FUNDAMENTALS AND CHARACTERIZATION

High Entropy Materials: Concentrated Solid Solutions, Intermetallics, Ceramics, Functional Materials and Beyond II — Materials Discovery and Design I

Sponsored by: TMS Alloy Phases Committee, TMS Mechanical Behavior of Materials Committee

Program Organizers: Michael Gao, National Energy Technology Laboratory; Xingbo Liu, West Virginia University; Peter Liaw, University of Tennessee; Jian Luo, University of California, San Diego; Yiquan Wu, Alfred University; Yu Zhong, Worcester Polytechnic Institute; Mitra Taheri, Johns Hopkins University; Amy Clarke, Colorado School of Mines

Monday AM | October 18, 2021 B131 | Greater Columbus Convention Center

Session Chairs: Katharine Flores, Washington University in St. Louis; Daniel Miracle, Air Force Research Laboratory

8:00 AM Invited

Structure Design and Properties of Multiple-basis-element (MBE) Alloy Flexible Films: Hao Huang¹; Peter Liaw²; Yong Zhang¹; ¹University of Science and Technology Beijing; ²The University of Tennessee

8:20 AM Keynote

High-entropy and Multi-principle Element Materials: Distinguishing Features and Emerging Opportunities: Daniel Miracle¹; Stéphane Gorsse²; ¹Air Force Research Laboratory; ²CNRS, University of Bordeaux

9:00 AM Invited

A High-throughput Strategy to Study Phase Stability and Mechanical Properties in Complex Concentrated Alloys: Mu Li¹; Zhaohan Zhang¹; Arashdeep Thind¹; Guodong Ren¹; Rohan Mishra¹; *Katharine Flores*¹; ¹Washington University in St. Louis

9:20 AM Invited

Computationally Guided High Entropy Alloy Discovery: *Kenneth Smith*¹; John Sharon¹; Ryan Deacon¹; Soumalya Sarkar¹; ¹Raytheon Technologies Research Center

9:40 AM Invited

Enabling High-strength and Oxidation-resistant Refractory Complex, Concentrated Alloys via Multi-fidelity Experiments and Simulations: *Michael Titus*¹; ¹Purdue University

FUNDAMENTALS AND CHARACTERIZATION

Integration between Modeling and Experiments for Crystalline Metals: From Atomistic to Macroscopic Scales III — Session I

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Levente Balogh, Queen's University; Caizhi Zhou, University of South Carolina; Lei Cao, University of Nevada; Josh Kacher, Georgia Institute of Technology

Monday AM | October 18, 2021 B246 | Greater Columbus Convention Center

Session Chairs: M Arul Kumar, Los Alamos National Laboratory; Nathan Mara, University of Minnesota

8:00 AM Invited

An Integrated Modeling-experiment Approach to Investigating Metallic Interfaces Containing 3D Character: Nathan Mara¹; Justin Cheng¹; Zezhou Li¹; Shuozhi Xu²; Youxing Chen³; Jonathan Poplawsky⁴; Nan Li⁵; Irene Beyerlein²; ¹University of Minnesota; ²University of California, Santa Barbara; ³University of North Carolina, Charlotte; ⁴Oak Ridge National Laboratory; ⁵Los Alamos National Laboratory

8:40 AM

Modeling Slip Transmission across Interface Using Dislocation Dynamics Simulations: *Aritra Chakraborty*¹; Abigail Hunter¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

9:00 AM

Confined Layer Slip in Nanolaminates: Effect of Interface Structure and Layer Thickness: Wurong Jian¹; Shuozhi Xu¹; Yanqing Su²; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²Utah State University

9:20 AM

An Investigation of the Effect of Grain Boundary Parameters on the Slip System Level Hall-petch Coefficient for Basal and Prismatic Slip Systems in Mg-4Al: Mohsen Taheri Andani¹; Aaditya Lakshmanan¹; Veera Sundararaghavan¹; John Allison¹; Amit Misra¹; ¹University of Michigan

9:40 AM

Investigating the Mechanical Properties of Grain Boundaries with Displacement Texture Analysis: Anqi Qiu¹; Ian Chesser²; Elizabeth Holm¹; ¹Carnegie Mellon University; ²George Mason University

PROCESSING AND MANUFACTURING

Light Metal Technology — Magnesium and Joining Technology

Sponsored by: TMS Titanium Committee

Program Organizers: Xiaoming Wang, Purdue University; Yufeng Zheng, University of Nevada-Reno

Monday AM | October 18, 2021 A213 | Greater Columbus Convention Center

Session Chair: Yufeng Zheng, University of Nevada-Reno

10:00 AM

Diffusion Bonding of Aluminum by applying oscillating Pressure: Martin Salge¹; *Felix Gemse*¹; Steffen Dahms¹; ¹Günter-Köhler-Institute GmbH

10:20 AM

ECAP Strain Path Effect on Microstructure, Texture, and Mechanical Properties Evolution in Pure Magnesium: *Prakash Gautam*¹; Somjeet Biswas²; ¹India Institute of Technology Kharagpur; ²IIT Kharagpur

10:40 AM

Modeling and Study of the Effect of High Cooling Rates during Crystallization on the Structure and Properties of the Mg-Zr-Nd Alloy Used for Implants: Nikita Aikin¹; Vadim Shalomeev¹; ¹Zaporozhye National Technical University

11:00 AM

Ultrasonic Effects on Plastic Deformation Behavior of AA2024: *Jiarui Kang*¹; Randy Cheng²; Xun Liu¹; Alan Taub²; ¹The Ohio State University; ²University of Michigan

CERAMIC AND GLASS MATERIALS

Manufacturing and Processing of Advanced Ceramic Materials — New Opportunities in Ceramic Processing

Sponsored by: ACerS Manufacturing Division

Program Organizers: Bai Cui, University of Nebraska-Lincoln; James Hemrick, Oak Ridge National Laboratory; Mike Alexander, Allied Mineral Products; Eric Faierson, Quad City Manufacturing Laboratory/ Western Illinois University; Keith DeCarlo, Blasch Precision Ceramics

Monday AM | October 18, 2021 B234 | Greater Columbus Convention Center

Session Chairs: William Fahrenholtz, Missouri University of Science and Technology; Waltraud Kriven, University of Illinois at Urbana-Champaign

8:00 AM Invited

Recent Progress in Fusion Welding of Structural Ceramics and Composites: William Fahrenholtz¹; Greg Hilmas¹; Jeremy Watts¹; Jecee Jarman¹; ¹Missouri University of Science and Technology

8:40 AM

Surface Stengthening of Single-crystal Alumina by High-temperature Laser Shock Peening: Fei Wang¹; Xueliang Yan¹; Lei Liu¹; Michael Nastasi²; Yongfeng Lu¹; Bai Cui¹; ¹University of Nebraska Lincoln; ²Texas A&M University

9:00 AM Invited

Low Energy Syntheses of Ceramic Powders and Composites: Waltraud Kriven¹; ¹University of Illinois at Urbana-Champaign

9:40 AM

Textured UHTC Borides Using Extremely Low Magnetic Fields: Juan Diego Shiraishi¹; Carolina Tallon²; ¹Virginia Polytechnic Institute and State University; ²Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University

10:00 AM Break

10:20 AM Invited

Ultra-fast Laser Sintering of Alumina and the Microstructure Prediction Based on Machine Learning: Xiao Geng¹; Jianan Tang¹; Dongsheng Li²; Yunfeng Shi³; Rajendra Bordia¹; Jianhua Tong¹; Hai Xiao¹; Fei Peng¹; ¹Clemson University; ²Advanced Manufacturing LLC; ³Rensselaer Polytechnic Institute

MODELING

Multi Scale Modeling of Microstructure Deformation in Material Processing — Multi Scale Modeling of Microstructure Deformation in Material Processing

Sponsored by: AIST Metallurgy—Processing, Products and Applications Technology Committee

Program Organizers: Lukasz Madej, AGH University of Science and Technology; Jaimie Tiley, Oak Ridge National Laboratory; Muszka Krzysztof, AGH University of Science and Technology; Danuta Szeliga, AGH University of Science and Technology

Monday AM | October 18, 2021 A122 | Greater Columbus Convention Center

Session Chair: Xun Liu, Ohio State University

10:00 AM

Finite Element Simulation of Grain Growth with an Arbitrary Grain Boundary Energy and Explicit Grain Boundary Representation: Erdem Eren¹; Jeremy Mason¹; ¹University of California, Davis

10:20 AM

The Formation of Irradiation Induced Defects in NiTi and their Effects on the Martensitic Transformation: Taiwu Yu¹; Alejandro Hinojos¹; Daniel Hong¹; Peter Anderson¹; Michael Mills¹; Yunzhi Wang¹; ¹Ohio State University

10:40 AM

Microstructural Evolution from Hot Torsion Tests for Material Modeling and Parameterization: Andrew Gilmore¹; Xun Liu¹; ¹The Ohio State University

NANOMATERIALS

Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry — Session I

Sponsored by: ACerS Electronics Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Gary Pickrell, Virginia Tech; Navin Manjooran, Solve Technology and Research, Inc.

Monday AM | October 18, 2021 B242/243 | Greater Columbus Convention Center

Session Chairs: Gary Pickrell, Professor, Virginia Tech; Navin Manjooran, Chairman, Solve

10:00 AM

Fabrication and Characterization of Tungsten Nanopowder for Hard Alloy Manufacturing: *Amir Abidov*¹; Ahror Fattahov¹; Ulugbek Ruziev¹; Ilhom Asadov¹; Abdullo Khursanov¹; Bum Sung Kim¹; Fayzullo Norkhodjaev¹; ¹"Almalyk MMC" JSC

10:20 AM

Viral Inactivation Using Localized UV Emission and Application in Self-cleaning PPE: Udit Kumar¹; Craig Neal¹; Candace Fox¹; Elayaraja Kolanthai¹; Griffith Parks¹; Sudipta Seal¹; ¹University of Central Florida

10:40 AM

First-principles Study of Substituent Effects on Squaraine Dyes: German Barcenas¹; Austin Biaggne¹; Bernard Yurke¹; William Knowlton¹; Lan Li¹; ¹Boise State University

11:00 AM

Ceramic Pigments of the Garnet Type Synthesized by Utilization of Rice Husk Ash: *Irena Markovska*¹; Tsvetan Dimitrov²; Fila Yovkova¹; ¹University "Prof. Dr. Asen Zlatarov "-Burgas; ²Ruse University Angel Kanchev, Razgrad Branch

BIOMATERIALS

Next Generation Biomaterials — Session I

Sponsored by: ACerS Bioceramics Division, TMS Biomaterials Committee

Program Organizers: Roger Narayan, University of North Carolina; Min Wang, University of Hong Kong; Shawn Allan, Lithoz America LLC

Monday AM | October 18, 2021 A224 | Greater Columbus Convention Center

Session Chairs: Soshu Kirihara, Osaka University; Masanori Kikuchi, National Institute for Materials Science

8:00 AM Invited

Controlling the Nanoscale Architecture in Rare Earth Doped Nanoparticles for Applications in Nanomedicine: Fiorenzo Vetrone¹; ¹INRS, Université du Québec

FUNDAMENTALS AND CHARACTERIZATION

Nucleation of Solid-State Phase Transformations — Nucleation of Solid-State Phase Transformations

Sponsored by: TMS Phase Transformations Committee

Program Organizers: Eric Lass, University of Tennessee-Knoxville; Sophie Primig, University of New South Wales; Keith Knipling, Naval Research Laboratory

Monday AM | October 18, 2021 B132 | Greater Columbus Convention Center

Session Chair: Eric Lass, University of Tennessee, Knoxville

8:00 AM Invited

Critical Nuclei at Hetero-phase Interfaces: Rongpei Shi¹; Tae Wook Heo¹; Brandon Wood¹; Yunzhi Wang²; ¹Lawrence Livermore National Laboratory; ²The Ohio State University

8:30 AM

Formation of the γ "-Ni₂(Cr, Mo, W) Phase during Two-step Heat Treatment in Haynes® 244® Alloy: *Thomas Mann*¹; Michael Fahrmann²; Michael Titus¹; ¹Purdue University; ²Haynes International

8:50 AM

Investigation of Nucleation Mechanisms Associated with the Formation of Coprecipitates in Ni-based Superalloys: Hariharan Sriram¹, Semanti Mukhopadhyay¹; Michael Mills¹, Yunzhi Wang¹; ¹Ohio State University

9:10 AM

Modeling Microstructure Evolution Using the Steepest-entropyascent Quantum Thermodynamic Framework: Jared Mcdonald¹; Michael von Spakovsky²; William Reynolds²; ¹Virginia Polytechnic Institute; ²Virginia Polytechnic Institute and State University

9:30 AM

Observing the Solid-state Processes under Additive Manufacturing Conditions Inside the TEM: Sriram Vijayan¹; Meiyue Shao¹; Avantika Gupta¹; Rohan Casukhela¹; Joerg Jinschek¹; ¹The Ohio State University

CERAMIC AND GLASS MATERIALS

Phase Transformations in Ceramics: Science and Applications — Experimental Studies on Structure and Control I

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Scott Mccormack, University of California, Davis; Pankaj Sarin, Oklahoma State University; Sanjay V. Khare, University of Toledo; Waltraud Kriven, University of Illinois at Urbana-Champaign

Monday AM | October 18, 2021 B230 | Greater Columbus Convention Center

Session Chair: To Be Announced

8:00 AM Invited

Electrical Activation of the Martensitic Transformation in Zirconia: Christopher Schuh¹; Alan Lai¹; ¹Massachusetts Institute of Technology

8:30 AM Invited

Tailorable Porous CeO₂-Doped ZrO₂ as a Pathway to Superelastic and Shape-memory Ceramics: Laura Quinn¹; *Katherine Faber*¹; ¹California Institute of Technology

9:00 AM

Useful Energy Dissipation and Fatigue Resistance in Cyclically Loaded Superelastic Ceramic Granular Packings: Hunter Rauch¹; Joey Griffiths¹; David Garcia¹; Yan Chen²; Ke An²; Hang Yu¹; ¹Virginia Polytechnic Institute and State University; ²Oak Ridge National Lab

9:20 AM

In-situ TEM Observation on the Motion of Phase Boundaries during Antiferroelectric Ferroelectric Transition: *Binzhi Liu*¹; Xinchun Tian¹; Lin Zhou²; Xiaoli Tan¹; ¹Iowa State University; ²U.S. Department of Energy

9:40 AM

Critical Parameters Controlling the Formation of High-entropy Oxides: Kuo-Pin Tseng¹; Benjamin Hulbert¹; Qun Yang¹; Waltraud Kriven¹; ¹University of Illinois at Urbana-Champaign

10:00 AM Break

10:20 AM

Thermal Expansion and Phase Transformation in the Rare Earth Di-titanate System: Benjamin Hulbert¹; Scott Mccormack²; Kuo-Pin Tseng¹; Waltraud Kriven¹; ¹University of Illinois at Urbana-Champaign; ²University of California Davis

PROCESSING AND MANUFACTURING

Processing and Performance of Materials Using Microwaves, Electric and Magnetic Fields, Ultrasound, Lasers, and Mechanical Work: The Rustum Roy Symposium — Session I

Sponsored by: ACerS Basic Science Division, ACerS Manufacturing Division

Program Organizers: Morsi Mahmoud, King Fahd University of Petroleum & Minerals; Dinesh Agrawal, Pennsylvania State University; Guido Link, Karlsruhe Institute of Technology; Motoyasu Sato, Chubu University; Rishi Raj, University of Colorado; Christina Wildfire, National Energy Technology Laboratory; Zhiwei Peng, Central South University

Monday AM | October 18, 2021 B233 | Greater Columbus Convention Center

Session Chair: Daudi Waryoba, Pennsylvania State University

8:00 AM

Assessment of Homogeneity in Percolated Composite Samples: Miriam Rath¹; Rosario Gerhardt¹; ¹Georgia Institute of Technology

8:20 AM

Freeform Microcasting: Luciano Borasi¹; Enrico Casamenti¹; Raphael Charvet¹; Cyril Denereaz¹; Sacha Pollonghini¹; Lea Deillon¹; Yves Bellouard¹; *Andreas Mortensen*¹; ¹EPFL

8:40 AM

Electromagnetic Assisted Thermal Processing Enabling Spatially Selective Phase Transformation of Metal Amorphous Nanocomposites: Ahmed Talaat¹; Kevin Byerly²; David Greve²; Michael McHenry²; Paul Ohodnicki¹; ¹University of Pittsburgh; ²Carnegie Mellon University

9:00 AM

Solid State Joining of Dissimilar Single Crystal Ni-based Superalloys Using Field Assisted Sintering Technology (FAST): Charis Lin²; Jogender Singh¹; Matthew Hogan¹; Namiko Yamamoto¹; ¹The Pennsylvania State University

9:20 AM Invited

Electric Current Processing of Additively Manufactured Ti-6Al-4V Alloy: Daudi Waryoba¹; Zahabul Islam¹; Ted Reutzel¹; Aman Haque¹; ¹Pennsylvania State University

MATERIALS-ENVIRONMENT INTERACTIONS

Thermodynamics of Materials in Extreme Environments — Thermodynamics of Nuclear Materials and Minerals

Sponsored by: ACerS Basic Science Division, ACerS Energy Materials and Systems Division

Program Organizers: Xiaofeng Guo, Washington State University; Kristina Lilova, Arizona State University; Kyle Brinkman, Clemson University; Alexandra Navrotsky, Arizona State University; Jake Amoroso, Savannah River National Laboratory; Xingbo Liu, West Virginia University; Gustavo Costa, NASA Glenn Research Center

Monday AM | October 18, 2021 A221 | Greater Columbus Convention Center

Session Chairs: Xiaofeng Guo, Washington State University; Kyle Brinkman, Clemson University

8:00 AM Introductory Comments

8:10 AM Invited

ACerS Navrotsky Award for Experimental Thermodynamics of Solids: Advancing Solar-Driven Thermochemical Fuel Production Using Nonstoichiometric Perovskites: Xin Qian¹; ¹Georgia Institute of Technology

8:55 AM

Thermodynamic Investigation of Multicomponent Chloride Molten Salts for Spent Fuel Processing: Liangyan Hao¹; Soumya Sridar¹; Elizabeth Sooby²; Wei Xiong¹; ¹University of Pittsburgh; ²University of Texas at San Antonio

9:15 AM Invited

Energetics of Fe3O4 - FeAl2O4 Spinel Solid Solution: Alexandra Navrotsky¹; ¹Arizona State University

PROCESSING AND MANUFACTURING

13th Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing — Novel Approaches to Sustainable Manufacturing I

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Surojit Gupta, University of North Dakota; Rajiv Asthana, University of Wisconsin; Hisayuki Suematsu, Nagaoka University of Technology; Mritunjay Singh, Ohio Aerospace Institute; Enrico Bernardo, University of Padova; Yiquan Wu, Alfred University; Zhengyi Fu, Wuhan University of Technology; Allen Apblett, Oklahoma State University; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology

Monday PM | October 18, 2021 A212 | Greater Columbus Convention Center

Session Chairs: Huong Le, Faraday Technology; Kathy Lu, Virginia Polytechnic Institute and State University

2:00 PM

Continuous Electrochemical Destruction of Contaminants of Emerging Concern (CECs) for Wastewater Treatment: Huong Le¹; Rajes Radhakrishnan¹; Brian Skinn¹; Timothy D Hall¹; Stephen Snyder¹; E. Jennings Taylor¹; Maria Inman¹; Chris Athmer²; ¹Faraday Technology; ²Terran Corporation

2:20 PM

Design of Novel Electrocoagulation Systems for Produced Water Treatment: *Stephen Polkowski*¹; Pankaj Sarin¹; ¹Oklahoma State University

2:40 PM

Microstructural Evolution and Mechanical Properties of Shear Assisted Processing and Extrusion (ShAPE) Processed Aluminum Alloys: Rajib Kalsar¹; Xiaolong Ma¹; Jens Darsell¹; Miao Song¹; Nicole Overman¹; Keerti Kappagantula¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

3:00 PM

Performance Assessment of Sustainable Near-dry EDM Process during Machining of Micro-channels on Ni-Ti Based Shape Memory Alloys: Ramver Singh¹; Akshay Dvivedi¹; Pradeep Kumar¹; ¹Indian Institute of Technology (IIT), Roorkee

3:20 PM Break

3:40 PM

Vibration and Mechanical Analysis of FDM Manufactured Soybean Hull Fiber/Polymer Composites: Roshan Mishra¹; Osama Sultan Bu Aamiri¹; Saleh Khanjar¹; Kunal Kate¹; Jagannadh Satyavolu¹; ¹University of Louisvillle

4:00 PM

Design of Novel Materials from Corn-based Precursors: *Surojit Gupta*¹; ¹University of North Dakota

ADDITIVE MANUFACTURING

Additive Manufacturing Modeling and Simulation: Microstructure, Mechanics, and Process — AM Modeling - Mechanical Properties

Sponsored by: TMS Computational Materials Science and Engineering Committee

Program Organizers: Jing Zhang, Indiana University – Purdue University Indianapolis; Brandon McWilliams, US Army Research Laboratory; Li Ma, Johns Hopkins University Applied Physics Laboratory; Yeongil Jung, Changwon National University

Monday PM | October 18, 2021 A113 | Greater Columbus Convention Center

Session Chairs: Jing Zhang, Indiana University - Purdue University Indianapolis; Brandon McWilliams, CCDC Army Research Laboratory; Li Ma, Johns Hopkins University Applied Physics Laboratory; Yeon-Gil Jung, Changwon National University

2:00 PM

Grain-scale Residual Stress Modeling in Wire Arc Additive Manufacturing of Haynes 282 Super Alloy: Santanu Paul¹; Wei Xiong¹; Albert To¹; ¹University of Pittsburgh

2:20 PM

Influence of Microstructure on Fatigue Crack Growth: An Combined Experiment and Model Investigation in EBM Nickel-Based Supper Alloy Haynes 282: Jiahao Cheng¹; Patxi Fernandez-Zelaia¹; Sebastien Dryepondt¹; Xiaohua Hu¹; Michael Kirka¹; ¹Oak Ridge National Laboratory

2:40 PM

Part-level Fast Predictions of Residual Stresses during LPBF of Al-Mg-Zr Alloys Using Microstructure Informed Inherent Strain Method: Abhishek Ramakrishnan¹; Daniel Satko¹; Ayman Salem¹; Jan Kasprzak²; Nam Phan²; ¹MRL Materials Resources LLC; ²Naval Air Systems Command

3:00 PM

Distortion Modeling during Sintering of Binder Jet Printed Parts: *Basil Paudel*¹; Albert To¹; ¹University of Pittsburgh

3:20 PM Break

3:40 PM

Modeling and Experimental Validation of Stresses in 3D Printed, Polymeric Biliary Stents: Victoria Cordista¹; Rebecca Lawson¹; Bailey Stanley¹; Sagar Patel¹; Joanna Thomas¹; ¹Mercer University

4:00 PM

Residual Stress Induced Cracking Modeling: *Kevin Glunt*¹; Wen Dong¹; Santanu Paul¹; Albert To¹; ¹University of Pittsburgh

4:20 PM

Improving the Mechanical Performance of AlSi10Mg Lattice Structures Manufactured by Laser Powder Bed Fusion (L-PBF): Hend Alqaydi¹; Sultan Alneyadi²; Jide Oyebanji¹; Dong Lee¹; Nesma Aboulkhair¹; ¹Technology Innovation Institute; ²Pennsylvania state university

ADDITIVE MANUFACTURING

Additive Manufacturing of Ceramic-based Materials: Process Development, Materials, Process Optimization and Applications — Session II: Extrusion-based AM and Stereolithography

Sponsored by: ACerS Engineering Ceramics Division, ACerS Basic Science Division, ACerS Manufacturing Division

Program Organizers: Xuan Song, University of Iowa; Lei Chen, University of Michigan-Dearborn; Xiangyang Dong, Missouri University of Science and Technology; Yiquan Wu, Alfred University; Paolo Colombo, University of Padova; Rajendra Bordia, Clemson University; Long-Qing Chen, Pennsylvania State University

Monday PM | October 18, 2021 A112 | Greater Columbus Convention Center

Session Chairs: Yiquan Wu, Alfred University; Xuan Song, University of Iowa

2:00 PM

Multifunctional Artificial Artery from Direct 3D Printing with Built-in Ferroelectricity and Tissue-Matching Modulus: Jun Li²; ¹University of Wisconsin-Madison

2:20 PM

Direct-write 3D Printing of Electrodes for High Power Density Batteries: Amjad Almansour¹; Mrityunjay Singh²; Michael Halbig¹; Daniel Gorican³; ¹NASA Glenn Research Center; ²Ohio Aerospace Institute at NASA Glenn Research Center; ³HX5, LLC at NASA Glenn Research Center

2:40 PM Invited

The Influence of Processing on the Mechanical Properties of Additively Manufactured Ceramic Matrix Composites: Mark O'Masta¹; Ekaterina Stonkevitch¹; Kaleigh Porter¹; Phuong Bui¹; Natalie Larson²; Zak Eckel¹; Tobias Schaedler¹; ¹HRL Laboratories LLC; ²Harvard University

3:10 PM

Additive Manufacturing of Yttrium-stabilized Zirconia Architectures with Stretch-dominated Mechanical Properties: Hunter Rauch¹; Kendall Knight¹; Huachen Cui²; Jake Yoder¹; Xiaoyu Zheng²; Hang Yu¹; ¹Virginia Polytechnic Institute and State University; ²University of California, Los Angeles

3:30 PM Break

3:50 PM

Characterization of Anisotropic Structure of Additive Manufactured Ceramics: Rosario Gerhardt¹; Yifan Jin¹; Zev Greenberg¹; Shawn Allan²; ¹Georgia Institute of Technology; ²Lithoz America, LLC

4:10 PM Invited

3D Printing of Nd:YAG Laser Ceramics through Lithography-based Light Projection: *Guangran Zhang*¹; Yiquan Wu¹; ¹Alfred University

4:40 PM

Enhanced Piezocomposite Transducers with 3D Printed Piezoelectric PZT: Shawn Allan¹; Nicholas Voellm¹; Justin Tufariello²; Barry Robinson³; Alex Angilella²; Leslie Riesenhuber²; Brian Pazol³; ¹Lithoz America LLC; ²The MITRE Corporation; ³MSI Transducers Corp.

In-Person Event: OCTOBER 17-20, 2021 • COLUMBUS, OHIO On-Demand Content available:

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

5:00 PM

Stereolithography Printing of Technical Ceramics and Its Applications: *Kenna Ritter*¹; Peter Durcan¹; ¹3DCERAM SINTO INC

ADDITIVE MANUFACTURING

Additive Manufacturing of High and Ultra-High Temperature Ceramics and Composites: Processing, Characterization and Testing — Binder Jet 3D Printing, Post-processing, and Testing

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Corson Cramer, Oak Ridge National Laboratory; Greg Hilmas, Missouri University of Science and Technology; Lisa Rueschhoff, Air Force Research Laboratory

Monday PM | October 18, 2021 A111 | Greater Columbus Convention Center

Session Chair: William Costakis, Air Force Research Labs

4:00 PM Invited

Binder Jet Additive Manufacturing of Novel Design, High Temperature, Ceramic Heat Exchangers: Benjamin Groth¹; Jesse Blacker¹; ¹ExOne

4:40 PM

Oxidation of 3D-printed SiC in Air and Steam Environments: Kenneth Kane¹; Padraig Stack²; Danny Schappel¹; Katherine Montoya³; Peter Mouche¹; Elizabeth Sooby³; Kurt Terrani¹; ¹Oak Ridge National Laboratory; ²University of Akron; ³University of Texas

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Microstructure, Properties and Alloy Development — Ni-based Alloys

Program Organizers: Prashanth Konda Gokuldoss, Tallinn University of Technology; Juergen Eckert, Erich Schmid Institute of Materials Science; Zhi Wang, South China University of Technology

Monday PM | October 18, 2021 A115 | Greater Columbus Convention Center

Session Chair: Ian Nettleship, University of Pittsburg

2:00 PM

Creation of Process Representative Flaws and Their Impact on the Mechanical Properties L-PBF Inconel 718: Jacob Rindler¹; David Schick²; Peter Daum³; Adam Sutton⁴; Michael Groeber¹; ¹Ohio State University; ²Proto Precision Additive; ³Rolls Royce; ⁴Lockheed Martin

2:20 PM

The Material Quality of Samples Obtained by Selective Laser Melting Method from IN718 Alloy Powder: Vladimir Klochikhin¹; Pavel Kasay¹; Konstantin Balushok¹; Valeriy Shilo¹; Valeriy Naumyk²; ¹JSC «Motor Sich»; ²NU "Zaporizhzhya Polytechnic"

2:40 PM

Heat Treatment Design of Haynes 282 Alloy Prepared by Wire-arc Additive Manufacturing: Yuankang Wang¹; Rafael Rodriguez De Vecchis¹; Wei Xiong¹; ¹University of Pittsburgh

3:00 PM

Microstructure Development of Additively Manufactured Gamma Prime Strengthened Ni-based Superalloy Rene65: Colleen Hilla¹; Andrew Wessman²; Alber Sadek³; Hyeyun Song⁴; Wei Zhang¹; Michael Mills¹; ¹Ohio State University; ²University of Arizona; ³Edison Welding Institute; ⁴Edison Welding Institute

3:20 PM Break

3:40 PM

Print Defects, Microstructure Evolution and Remnant Porosity for Binder-jet Printed 625 Alloy: Chuyuan Zheng¹; *Ian Nettleship*¹; Markus Chmielus¹; ¹University of Pittsburgh

4:00 PM

Mechanical Behavior of Ni-based Superalloy Single Crystals Produced via Electron Beam Melting AM: Patxi Fernandez-Zelai¹; Quinn Campbell¹; Chris Ledford¹; Michael Kirka¹; Sebastien Dryepondt¹; ¹Oak Ridge National Laboratory

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals:

ICME Gaps: Material Property and Validation Data to Support Certification — Data Acquisition: Material Property and Validation Data to Support Certification

Sponsored by: TMS: Integrated Computational Materials Engineering Committee, TMS Additive Manufacturing Bridge Committee

Program Organizers: Joshua Fody, NASA Langley Research Center; Edward Glaessgen, NASA Langley Research Center; Christapher Lang, NASA Langley Research Center; Greta Lindwall, KTH Royal Institute of Technology; Michael Sansoucie, NASA Marshall Space Flight Center; Mark Stoudt, National Institute of Standards and Technology

Monday PM | October 18, 2021 A114 | Greater Columbus Convention Center

Session Chairs: Jonathan Raush, University of Louisiana at Lafayette; Michael Sansoucie, NASA

2:00 PM

High Temperature Material Properties Measurement Capabilities of the NASA MSFC Electrostatic Levitation (ESL) Laboratory: *Michael Sansoucie*¹; ¹NASA Marshall Space Flight Center

2:20 PM Invited

Laser Energy Coupling during Metal Additive Manufacturing: Brian Simonds¹; ¹NIST

2:50 PM

An Analysis of the Dislocation Density of Inconel 718 Additive Manufacturing Powder: *Colby Azersky*¹, Sangho Jeon²; Peggy Cebe³; ¹NASA; ²Korea Research Institute of Standards and Science; ³Tufts University

3:10 PM Keynote

Providing a Rigorous Measurement Foundation for Modeling-Informed Qualification and Certification of Metal AM Components: Lyle Levine¹; Brandon Lane¹; Thien Phan¹; Fan Zhang¹; Mark Stoudt¹; Brian Simonds¹; David Deisenroth¹; ¹National Institute of Standards and Technology

ADDITIVE MANUFACTURING

Additive Manufacturing: Advanced Characterization for Industrial Applications — Structures and Material Properties

Sponsored by: TMS Advanced Characterization, Testing, and Simulation Committee, TMS Additive Manufacturing Bridge Committee

Program Organizers: Nadia Kouraytem, Utah State University; Fan Zhang, National Institute of Standards and Technology; Lianyi Chen, University of Wisconsin-Madison

Monday PM | October 18, 2021 A121 | Greater Columbus Convention Center

Session Chair: To Be Announced

2:00 PM Invited

Synchrotron Characterization of Hot Cracking and Related Topics: Anthony Rollett¹; Guannan Tang¹; Nadia Kouraytem²; Benjamin Gould³; Joseph Pauza¹; Ziheng Wu¹; Joseph Aroh¹; Runbo Jiang¹; Seunghee Oh¹; Srujana Yarasi¹; Ann Choi¹; Amit Verma¹; Rajib Halder¹; Andrew Huck¹; Zhening Yang¹; Amaranth Karra¹; ¹Carnegie Mellon University; ²Utah State University; ³Argonne National Laboratory

2:30 PM

Moisture Impacts in AM Metal Powders Characterized by Karl Fischer Oven Titration and Avalanche Rheometry: Dave van der Wiel¹; Ethan Pawlak¹; Tyler Gutzky¹; ¹NSL Analytical

2:50 PM

Investigation of the Protective Mixture Influence on the Heat Input Meaning for the Layered Electric Arc Surfacing of Aluminum Alloys AlSi5 and AlMg5: Mikhail Gnatenko¹; Valeriy Naumyk²; Maria Matkovska²; Vadim Shalomeev²; ¹JSK Motor Sich; ²NU "Zaporizhzhya Polytechnic"

3:10 PM

Gradient Alloy Heat Exchanger Manufacturing for Energy Applications: Kevin Luo¹; Bob Markley²; Nadia Kouraytem³; Hailei Wang³; *Michael Juhasz*⁴; ¹Formalloy Technologies, Inc.; ²3rd Dimension Industrial 3D Printing Co; ³Utah State University; ⁴FormAlloy Technologies, Inc.

3:30 PM Break

3:50 PM

Tensile Behavior of Metal AM Lattice Structures: Benedict DiMarco¹; Jeremy Seidt¹; Ariel Gluck; Jacob Rindler¹; Edward Herderick¹; ¹The Ohio State University

4:10 PM

The Effect of the Cross-sectional Area on the Microstructure and Mechanical Properties of AlSi10Mg Parts Manufactured by Laser Powder Bed Fusion (L-PBF): Nujood Alshehhi¹; Lewis Kindleyside²; Nesma Aboulkhair¹; ¹TII; ²Khalifa University

4:30 PM

The Influence of the Characteristic Microstructure of Additively Manufactured AlSi10Mg on the Mechanical Behaviour at Various Strain Rates: Natalia Ghisi¹; Henrique Ramos¹; Rafael Santiago¹; Lewis Kindleyside²; Wesley Cantwell²; Nesma Aboulkhair³; ¹TII; ²Khalifa University; ³University of Nottingham

4:50 PM Concluding Comments

ADDITIVE MANUFACTURING

Additive Manufacturing: Processing, Microstructure and Material Properties of Titanium-based Materials — Session II

Sponsored by: TMS Titanium Committee

Program Organizers: Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Peeyush Nandwana, Oak Ridge National Laboratory; Rongpei Shi, Lawrence Livermore National Laboratory

Monday PM | October 18, 2021 A120 | Greater Columbus Convention Center

Session Chair: Anthony Rollett, Carnegie Mellon University

4:00 PM

An Automated Tool for Porosity Characterization and Classification in LPBF: Evan Diewald¹; Jack Beuth¹; ¹Carnegie Mellon University

4:20 PM

Time-resolved Characterization of Evolving Phase and Microstructure of Ti-6Al-4V during Laser Processing with Synchrotron X-ray Diffraction: Seunghee Oh¹; Rachel Lim²; Joseph Aroh¹; Andrew Chuang³; Benjamin Gould³; Behnam Amin-Ahmadi⁴; Joel Bernier⁵; Tao Sun⁶; P. Chris Pistorius¹; Robert Suter¹; Anthony Rollett¹; ¹Carnegie Mellon University; ²Penn State University; ³Argonne National Laboratory; ⁴Colorado School of Mines; ⁵Lawrence Livermore National Laboratory; ⁶University of Virginia

4:40 PM

Modeling of True Stress-Strain in the Plastic Regime of Additively Manufactured Ti-6Al-4V: Andrew Temple¹; Maria Quintana¹; Peter Collins¹; Ilowa State University

5:00 PM

On the Use of Energy Dispersive Spectroscopy to Inform on Local Property Variations and Defect Formation across AM Processes: *Katie O'Donnell*¹; Maria Quintana¹; Matthew Kenney¹; Andrew Temple¹; Scott Blazanin¹; Shraddha Vachhani¹; Peter Collins¹; ¹Iowa State University

5:20 PM

Reactiviting Transformation Induced Plasticity (TRIP) in an Additively Manufactured B-Ti Alloy: Srinivas Aditya Mantri²; MSKKY Nartu¹; Narendra Dahotre¹; Rajarshi Banerjee¹; ¹University of North Texas

ENERGY

Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments — Nuclear Fuels. Ceramics, and Corrosion

Sponsored by: TMS Nuclear Materials Committee

Program Organizers: Cody Dennett, Idaho National Laboratory; Samuel Briggs, Oregon State University; Christopher Barr, Naval Nuclear Laboratory; Michael Short, Massachusetts Institute of Technology; Janelle Wharry, Purdue University; Cheng Sun, Idaho National Laboratory; Caitlin Taylor, Los Alamos National Laboratory; Emily Aradi, University of Manchester; Khalid Hattar, Sandia National Laboratories

Monday PM | October 18, 2021 A215 | Greater Columbus Convention Center

Session Chairs: Marat Khafizov, Ohio State University; Christopher Barr, US Naval Nuclear Laboratory

2:00 PM Invited

Characterization of Defects, Thermal Transport, and Elastic Properties in As-fabricated and Irradiated Single Crystal of ThO2: Marat Khafizov¹; Saqeeb Adnan¹; Joshua Ferrigno¹; Vinay Chauhan¹; Amey Khanolkar²; Cody Dennett²; Yuzhou Wang; Kaustubh Bawane²; Linu Malakkal²; Miaomiao Jin³; Zilong Hua²; Chao Jiang²; Lingfeng He²; Chris Marianetti⁴; Anter El-Azab⁵; David Hurley²; ¹Ohio State University; ²Idaho National Laboratory; ³Pennsylvania State University; ⁴Columbia University; ⁵Purdue University

2:20 PM Invited

In Situ Ion Irradiation of Gadolinium Titanate: A Perspective on Microstructure and Memory: Jessica Krogstad¹; Nathan Madden¹; Matthew Janish²; James Valdez²; Blas Uberuaga²; ¹University of Illinois at Urbana-Champaign; ²Los Alamos National Laboratory

2:40 PM

Insight into the Impact of Irradiation on Vibrational Properties of AlN Using Raman Spectroscopy: Saqeeb Adnan¹; Yuzhou Wang²; Aleksandr Chernatynskiy³; Marat Khafizov¹; ¹The Ohio State University; ²Idaho National Laboratory; ³Missouri University of Science and Technology

3:00 PM

Optical Characterization of Defects in Proton Irradiated Fluorite Oxides: Joshua Ferrigno¹; Vinay Chauhan¹; Amey Khanolkar²; Lingfeng He²; David Hurley²; Marat Khafizov¹; ¹Ohio State University; ²Idaho National Laboratory

3:20 PM

Microstructural Characterization of Oxidized Tristructural Isotropic Particles (TRISO) in Various Gas Atmospheres: Katherine Montoya¹; Brian Brigham¹; Tyler Gerczak²; Elizabeth Sooby¹; ¹University of Texas at San Antonio; ²Oak Ridge National Laboratory

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Coatings for Wear and Corrosion Protection — Session II

Program Organizers: Evelina Vogli, Lm Group Holdings Inc.; Virendra Singh, Schlumberger

Monday PM | October 18, 2021 A220 | Greater Columbus Convention Center

Session Chairs: Evelina Vogli, LM Group Holdings; Virendra Singh, Schlumberger

2:00 PM

The Effects of Graphene in Composite Polymer Coatings Against Inorganic Scales: Manuel Marya¹; Virendra Singh¹; Alireza Zolfaghari¹; ¹Schlumberger

2:20 PM

Direct Electrodeposition of Corrosion Resistant Coatings onto Aluminum Alloys: Rajeswaran Radhakrishnan¹; Timothy Hall¹; Maria Inman¹; Earl Jennings Taylor¹; Stephen Snyder¹; Cory Crowley²; ¹Faraday Technology Inc; ²Fermi National Accelerator Laboratory

2:40 PM

Improved Coating Performance of REACH Compliant Trivalent Chromium Plating Process for Functional Applications: Andrew Moran¹; Tim Hall¹; Rajeswaran Radhakrishnan¹; Stephen Snyder¹; Maria Inman¹; EJ Taylor¹; Kamyar Ahmadi²; Stanko Brankovic²; George Bokisa³; Mark Feathers⁴; ¹Faraday Technology Inc.; ²University of Houston; ³Coventya International; ⁴U.S. Army Aviation and Missile Command

3:00 PM

Galvanic Corrosion Mitigation of CFRP-AZ31B Dissimilar Joint: Yong Chae Lim¹; Jiheon Jun¹; Jong Kahk Keum¹; Yuan Li¹; Donovan Leonard¹; Michael Brady¹; Zhili Feng¹; ¹Oak Ridge National Laboratory

3:20 PM Break

3:40 PM

Novel Spray-on TBC Coating with Outstanding Wear and Corrosion Protection: *Paul Curtis*¹, ¹Applied Thin Films, Inc.

4:00 PM

Polymeric Coatings Embedded with Green Anti-corrosive Pigment for Corrosion Inhibition of Steel: Muddasir Nawaz¹; Abdul Shakoor¹; Ramazan Kahraman¹; M. F. Montemor²; ¹Qatar University; ²Universidade de Lisboa

4:20 PM

Controlled Release of Corrosion Inhibitors by Microencapsulation for Protection of Steel Reinforced Concrete: Jacob Ress¹; David Bastidas¹; Ulises Martin¹; Juan Bosch¹; ¹University of Akron

4:40 PM

High-performance Chrome Coatings to Protect Against Wear and Corrosion: Borys Sereda¹; *Dmytro Sereda*¹; ¹Dneprovsky State Technical University

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Materials for Harsh Environments — Session I

Sponsored by: ACerS Electronics Division

Program Organizers: Navin Manjooran, Solve Technology and Research, Inc.; Gary Pickrell, Virginia Tech

Monday PM | October 18, 2021 A223 | Greater Columbus Convention Center

Session Chairs: Gary Pickrell, Professor, Virginia Tech; Navin Manjooran, Chairman, Solve

2:00 PM

Investigation of the Variables Affecting Hot Corrosion Test Results: *Preston Nguyen*¹; Brian Gleeson¹; ¹University of Pittsburgh

2:20 PM

Characterization and High Temperature Electrical Properties of Brazed Joints of LaO.8SrO.2CrO3 with Nickel and Nickel Alloys: Zhengtao Yang¹; Javier Mena¹; Jordan Conte¹; Brian Jordan¹; Katarzyna Sabolsky¹; Kostas Sierros¹; Edward Sabolsky¹; West Virginia University

2:40 PM

Determining the Effect of Aerospace Environments on the Corrosion Fatigue Performance of AA7085-T7451: Brandon Free¹; Sarah Galyon Dorman²; Jason Niebuhr²; Nathan Houser²; Jenifer Locke¹; ¹The Ohio State University; ²SAFE Inc.

3:00 PM

Economically Alloyed High-speed Steel for Knives of Feeder Feeders of Glass Forming Machines: Valeriy Mishchenko¹; Sergy Sheyko¹; Vldimir Tsyganov²; Olha Bolsun¹; Svitlana Mudra¹; ¹Zaporizhzhia National University; ²National University "Zaporizhzhia Polytechnic"

ELECTRONIC AND MAGNETIC MATERIALS

Advances in Dielectric Materials and Electronic Devices — Magnetic Materials

Sponsored by: ACerS Electronics Division

Program Organizers: Amar Bhalla, University of Texas; Ruyan Guo, University of Texas at San Antonio; Rick Ubic, Boise State University; Matjaž Spreitzer, Jožef Stefan Institute

Monday PM | October 18, 2021 B235 | Greater Columbus Convention Center

Session Chair: Amar Bhalla, University of Texas at San Antonio

2:00 PM

Magnetocaloric Composites for High Efficiency Thermal Management: Christopher Kovacs¹; Timothy Haugan²; Michael McLeod³; Devin Grant⁴; ¹Scintillating Solutions LLC; ²Air Force Research Laboratory; ³University of Dayton Research Institute; ⁴Central State University

2:20 PM

Improvement of the Magnetic Characteristics of Materials Due to the Formation of Unidirectional Boundaries of Ferrite during Processing in SHS Conditions: Borys Sereda¹; Dmytro Sereda¹; Vitalyy Volokh¹; ¹Dneprovsky State Technical University

2:40 PM

The influence of the Microstructure Obtained After Processing in SHS Conditions on the Magnetic Characteristics of Steels: Borys Sereda¹; *Dmytro Sereda*¹; Vitalyy Volokh¹; ¹Dneprovsky State Technical University

3:00 PM

The Effect of Deformation of Low Alloy Steels Used in Metallurgy on Their Magnetic Characteristics: Borys Sereda¹; Dmytro Sereda¹; Vitalyy Volokh¹; ¹Dneprovsky State Technical University

IRON AND STEEL (FERROUS ALLOYS)

Advances in Ferrous Metallurgy — Advances in Steel Products

Sponsored by: AIST Metallurgy—Processing, Products and Applications Technology Committee

Program Organizers: Daniel Baker, General Motors Corporation; Emmanuel De Moor, Colorado School of Mines; Kishlay Mishra, Nucor Castrip Arkansas LLC; Lijia Zhao, ArcelorMittal Global R&D

Monday PM | October 18, 2021 A210 | Greater Columbus Convention Center

Session Chair: To Be Announced

4:00 PM

High Strength Low Alloy Steels strengthened by Heusler precipitates: Rafael Rodriguez De Vecchis¹; Minal Shah¹; Yuankang Wang¹; Xin Wang¹; Soumya Sridar¹; Zhangwei Wang¹; Wei Xiong¹; ¹University of Pittsburgh

4:20 PM

Development of Fine Grained Steel for Cold Heading Application: *Deepan N*¹; Manjini Sambandam¹; ¹JSW Steel Ltd, Salem Works

IRON AND STEEL (FERROUS ALLOYS)

Advances in Metallic Coated Advanced Steels — Liquid Metal Embrittlement and Advances in Coating Production

Sponsored by: AIST: Metallurgy Processing Products and Applications Technology Committee , AIST: Galvanizing Technology Committee

Program Organizers: Joseph McDermid, McMaster University; Frank Goodwin, ILZRO

Monday PM | October 18, 2021 A211 | Greater Columbus Convention Center

Session Chairs: Joseph McDermid, McMaster University; Frank Goodwin, International Zinc Association

2:00 PM

Influence of Temperature on the Mechanical Behavior of TRIP1180 Spot Welds with Liquid Metal Embrittlement Cracks: Kayla Molnar¹; Kip Findley²; ¹Los Alamos National Laboratory; ²Colorado School of Mines

2:20 PM

Liquid Metal Embrittlement in TRIP and Martensitic Ultrahigh Strength Steels: *Pallavi Pant*¹; Emmitt Fagerstrom¹; Benjamin Hilpert²; Holger Schubert²; Luke Brewer¹; ¹The University of Alabama; ²Daimler AG

2:40 PM

Galvanizing Sheet Steel Under SHS Conditions for the Development of Steel Microstructures: Borys Sereda¹; Dmytro Sereda¹; Dmytro Kruglyak¹; Irina Kruglyak¹; IDneprovsky State Technical University

3:00 PM

A Study on Mechanical and Super-hydrophobic Behavior of the SiO2@ZnO Nano Core-shell Based Polymeric Coating: Jaya Verma¹; Deepak Kumar¹; ¹IIT Delhi

3:20 PM

Use of the New Integrated Indicator ECP-Zn for Control Zinc Coating Obtaining Under SHS Conditions: Borys Sereda¹; Irina Kruglyak¹; ¹Dneprovsky State Technical University

ARTIFICIAL INTELLIGENCE

Al for Big Data Problems in Advanced Imaging, Materials Modeling and Automated Synthesis — Artificial Intelligence for Automated Synthesis and Characterization

Sponsored by: TMS: Computational Materials Science and Engineering Committee

Program Organizers: Mathew Cherukara, Argonne National Lab; Badri Narayanan, University of Louisville; Subramanian Sankaranarayanan, University of Illinois (Chicago)

Monday PM | October 18, 2021 A124 | Greater Columbus Convention Center

Session Chair: To Be Announced

2:00 PM

Improving EBM NIR Image Analysis for Component Qualification a Statistical Learning Approach: Michael Sprayberry¹; John Ledford¹; Michael Kirka¹; ¹Oak Ridge National Laboratory

2:20 PM

A Deep Generative Model for Parametric EBSD Pattern Simulation: Zihao Ding¹; Marc Graef¹; ¹Carnegie Mellon University

2:40 PM Invited

Non-iterative Deep Learning for High-fidelity Microscopic Tomography: Singanallur Venkatakrishnan¹; Amir Koushyar Ziabari¹; Jacob Hinkle¹; Micheal Kirka¹; Jeffrey Warren¹; Hassina Bilheux¹; Vincent Paquit¹; Ryan DeHoff¹; ¹Oak Ridge National Laboratory

3:00 PM

Optimizing the Training of Convolutional Neural Networks for Image Segmentation: *Benjamin Provencher*¹; Aly Badran¹; Jonathan Kroll¹; Mike Marsh²; ¹University of Colorado; ²Object Research Systems

3:20 PM Break

3:40 PM

Semantic Segmentation of Porosity in In-situ X-ray Tomography Data Using FCNs: Pradyumna Elavarthi¹; Arun Bhattacharjee¹; Anca Ralescu¹; Ashley Paz y Puente¹; ¹University of Cincinnati

4:00 PM

Machine-learning Based Algorithms for 4D X-ray Microtomographic Analysis: Hamidreza T-Sarraf²; Sridhar Niverty¹; Nikhilesh Chawla¹; ¹Purdue University

CERAMIC AND GLASS MATERIALS

Ceramic Matrix Composites — Session II

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command

Monday PM | October 18, 2021 B232 | Greater Columbus Convention Center

Session Chair: To Be Announced

2:00 PM Invited

Ceramic Matrix Composite Technologies for Accident-tolerant Fuel Applications – Progress and Opportunities: Yutai Katoh¹; Takaaki Koyanagi¹; David Arregui-Mena¹; Peter Mouche¹; Ken Kane¹; Peng Xu²; Christian Deck³; ¹Oak Ridge National Laboratory; ²Idaho National Laboratory; ³General Atomics

2:40 PM

Synergistic Effects of Oxidation and Applied Load on SiC/BN/SiC Ceramic Matrix Composite Durability at Intermediate Temperatures: Kaitlin Detwiler¹; Marcus Dozer¹; *Elizabeth Opila*¹; ¹University of Virginia

3:20 PM

Oxidation of BN Coatings in SiC/SiC Composites: Victoria Christensen¹; Frank Zok¹; ¹University of California, Santa Barbara

3:40 PM Break

4:00 PM

Development of Low Temperature, Dense Nano-composite Material Combining Electrophoretic and Atomic Layer Deposition Technique: Sumit Bhattacharya¹; Michael Pellin¹; Abdellatif Yacout¹; ¹Argonne National Laboratory

4:20 PM

High Temperature Composites Based on Zirconia Cement. High Temperature Composites Based on Ceramic Cements.: *Nickolai lliukha*¹; ¹Kyiv University

MATERIALS-ENVIRONMENT INTERACTIONS

Coatings to Protect Materials from Extreme Environments — Coatings and Surface Treatments for Extreme Environments

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Kang Lee, NASA Glenn Research Center; Yutaka Kagawa, The University of Tokyo; Daniel Mumm, University of California, Irvine; Rodney Trice, Purdue University; Emmanuel Boakye, UES Inc.; Valerie Wiesner, NASA Langley Research Center; Edward Gorzkowski, Naval Research Laboratory; Scooter Johnson, Naval Research Laboratory

Monday PM | October 18, 2021 A222 | Greater Columbus Convention Center

Session Chairs: Daniel Mumm, University of California, Irvine; Edward Gorzkowski, Naval Research Laboratory

2:00 PM

Aerosol Deposition and Characterization of Sodium Niobate: *Eric Patterson*¹; Heonjune Ryou¹; Edward Gorzkowski¹; ¹U.S. Naval Research Laboratory

2:30 PM

Functionally Graded Corrosion Resistant Coatings for Molten Salt Reactor Systems: Holly Garich¹; Tim Hall¹; Stephen Raiman²; Bruce Pint³; ¹Faraday Technology; ²Texas A&M University; ³Oak Ridge National Laboratory

2:50 PM

Effects of Laser Remediation Treatments on Global vs Local Environmentally-assisted Cracking of 5xxx Series Aluminum Alloy Ship Plate: Yang Liu¹; John Lewandowski¹; ¹Case Western Reserve University

3:10 PM Break

3:30 PM

Electrodeposition of Functionally-graded Interlayers for Joining Plasma-facing Components and Heat-sinks for Nuclear Fusion Reactors: *Katherine Lee*¹; Brian Skinn¹; Steve Snyder¹; Maria Inman¹; ¹Faraday Technology, Inc.

3:50 PM

The Efficacy of Inorganic Zinc-Rich Primers to Mitigate Stress Corrosion Susceptibility in Al-Mg Alloys: *Matthew McMahon*¹; Allison Akman¹; Eric Dau²; ¹Naval Surface Warfare Center, Carderock Division; ²Vision Point Systems, LLC.

NANOMATERIALS

Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — 1D Nanostructures

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Polytechnic Institute and State University; Edward Gorzkowski, Naval Research Laboratory; Jian Shi, Rensselear Polytechnich University; Michael Naguib, Tulane University; Sanjay Mathur, University of Cologne

Monday PM | October 18, 2021 B240/241 | Greater Columbus Convention Center

Session Chairs: Haitao Zhang, University of North Carolina at Charlotte; Sanjay Mathur, University of Cologne

2:00 PM Invited

Self-Assembled Periodic Nanostructures of SrSnO₃ Using Martensitic Phase Transformations: Bharat Jalan¹; ¹University of Minnesota

2:40 PM

Growth Mechanism Study of Boron Carbide Nanowires: *Manira Akter*¹; Terry Xu¹; ¹University of North Carolina Charlotte

3:00 PM

Mechanism Study of Controlled Growth of Transition Metal Oxide Nanostructures: $Haitao\ Zhang^1$; 1University of North Carolina at Charlotte

3:20 PM Break

3:40 PM

NiO Nanostructure Growth at High Temperature in Water Vapor via In-situ ESEM: *Boyi Qu*¹; Klaus van Benthem¹; ¹University of California Davis

4:00 PM

Nanotube Consolidations and Metal-PTFE Nanocomposites for Conformable Thermal and Electrical Interfaces: Christopher Kovacs¹; Timothy Haugan²; Robert Ansel³; ¹Scintillating Solutions LLC; ²Air Force Research Laboratory; ³Linseis Inc.

4:20 PM

Effect of Doping Carbon Nanotubes with Group III-V Compounds Using Floating Catalyst Method: Anuptha Pujari¹; Mark Schulz¹; Nanoworld Laboratories, University of Cincinnati

SPECIAL TOPICS

Curricular Innovations and Continuous Improvement of Academic Programs (and Satisfying ABET along the Way): The Elizabeth Judson Memorial Symposium — Course Innovations

Sponsored by: TMS: Accreditation Committee, TMS: Education Committee

Program Organizers: Alison Polasik, Campbell University; Susan Gentry, University of California, Davis; Jeffrey Fergus, Auburn University; Assel Aitkaliyeva, University of Florida; Kester Clarke, Colorado School of Mines; Subhadra Gupta, University of Alabama; Gregg Janowski, University of Alabama at Birmingham; M. Norton, Washington State University

Monday PM | October 18, 2021 B144/145 | Greater Columbus Convention Center

Session Chair: Alison Polasik, Campbell University

2:00 PM Introductory Comments

2:05 PM

Online Instruction of a Large Introductory Materials Course: A Partially Asynchronous Approach: Jonathan Brown¹; Jenifer Locke¹; ¹The Ohio State University

2:25 PM

Reframing Lab Courses to Improve Both Student Engagement and ABET Alignment: Timothy Chambers¹; ¹University of Michigan

2:45 PM

Integrating Problem Based Learning into a Metals Processing Class: Peter Collins¹; ¹Iowa State University

3:05 PM Break

3:20 PM Panel Discussion: Discussion About the Future of Online Materials Education

FUNDAMENTALS AND CHARACTERIZATION

Deformation-induced Phase Transformations — Deformation-induced Phase Transformations

Program Organizers: Yangyang Zhao, Purdue University; Jonah Klemm-Toole, Colorado School of Mines; Amy Clarke, Colorado School of Mines; Janelle Wharry, Purdue University

Monday PM | October 18, 2021 B132 | Greater Columbus Convention Center

2:00 PM Invited

Ausforming of Ferrium M54 Ultra-high Strength Steel: Suveen Mathaudhu¹; Yiwei Sun²; Joshua Edwards¹; Jeffrey Lin³; Thomas Kozmel³; ¹Colorado School of Mines; ²Southeast University; ³Questek Innovations, LLC

2:40 PM

Analysis of Stress State of Plastic Medium Influence on Structural Transformations in Low-alloy Steels: Anton Matiukhin¹; Sergey Sheyko²; Vldimir Tsyganov¹; Valeriy Naumyk¹; Anna Ben¹; ¹"Zaporizhzhia Polytechnic" National University; ²Zaporizhzhia National University

3:00 PM

Localized Phase Transformation at Stacking Faults and the Corresponding Alloy Design Strategy: Longsheng Feng¹; Ashton Egan¹; Timothy Smith²; Shakthipriya Baskar¹; Michael Mills¹; Maryam Ghazisaeidi¹; Yunzhi Wang¹; ¹The Ohio State University; ²NASA Glenn Research Center

3:20 PM Break

3:40 PM Invited

Intrinsic Coupling between Deformation Twinning and Phase Transformation in NiTi Shape Memory Alloys and Metastable Beta Ti-alloys: Yipeng Gao¹; Qianglong Liang¹; Yufeng Zheng¹; Dong Wang²; Michael Mills¹; Hamish Fraser¹; Yunzhi Wang¹; ¹Ohio State University; ²Xian Jiao Tong University

4:20 PM

Solid Phase Plasticity Mechanisms in Metals and Rocks during Shear Deformation: Suveen Mathaudhu¹; Arun Devaraj²; ¹Colorado School of Mines / Pacific Northwest National Laboratory; ²Pacific Northwest National Laboratory

4:40 PM

Accounting for Phase Transformation in Plastic Anisotropy Modeling of SS316L: Elizabeth Mamros¹; Jinjin Ha¹; *Yannis Korkolis*²; Brad Kinsey¹; ¹University of New Hampshire; ²Ohio State University

PROCESSING AND MANUFACTURING

Development of Light Weight Alloys and Composites — Microstructure and Processing: Composites II

Program Organizers: Ramasis Goswami, Naval Research Laboratory; Nikhil Gupta, New York University; Tanjore Jayaraman, University of Michigan-Dearborn; Aashish Rohatgi, Pacific Northwest National Laboratory

Monday PM | October 18, 2021 A214 | Greater Columbus Convention Center

Session Chairs: Nikhil Gupta, New York University, Tandon School of Engineering; Tanjore Jayaraman, College of Engineering and Computer Science, University of Michigan-Dearborn

2:00 PM Invited

Impact of Laser Shock Peening on Stress Corrosion Susceptibility in Al-Mg Alloys: *Eric Dau*¹; William Golumbfskie²; Matthew McMahon²; ¹Vision Point Systems, LLC.; ²Naval Surface Warfare Center, Carderock Division

2:40 PM Invited

Low Cycle Fatigue Behavior of Conventional High Temperature Titanium Alloys for Aeroengine Applications: Ramachandra Canumalla¹; ¹Vice President and Chief Technology Officer

3:20 PM

Investigation of Microstructure, Interfaces and Mechanical Properties of Metal Matrix Composites: Ramasis Goswami¹; ¹Naval Research Laboratory

3:40 PM Break

4:00 PM

Magnesium Alloy Composite with Metal Reinforced Particles Using Friction Stir Processing To Improve Mechanical Properties: Sangam Sangral¹; Jayaprakash Murugesan¹; Mahesh Patel¹; Achyuth Kulkarni¹; ¹Indian Institute of Technology Indore

4:20 PM

Inoculation of ML5 Cast Magnesium Alloy with Carbon Nano Powder: Spartak Makovskyi¹; Vadym Shalomeev²; Volodymir Klochykhin¹; ¹Motor Sich JSC; ²National University Zaporozhye Polytechnica

4:40 PM

Insights into Metal-based Polymer Pyrolysis for In-situ MMC Production: Aaron Gladstein¹; Alan Taub¹; ¹University of Michigan

ENERGY

Energy Materials for Sustainable Development — Solar Energy Conversion

Sponsored by: ACerS Energy Materials and Systems Division

Program Organizers: Armin Feldhoff, Leibniz University Hannover; Kyle Brinkman, Clemson University; Krista Carlson, University of Utah; Eva Hemmer, University of Ottawa; Nikola Kanas, Institute Biosense, University of Novi Sad; Kjell Wiik, Norwegian University of Science and Technology; Lei Zuo, Virginia Tech; Stephanie Lee, Stevens Institute of Technology; Muhammad Hajj, Stevens Institute of Technology

Monday PM | October 18, 2021 A216 | Greater Columbus Convention Center

Session Chairs: Scott Misture, Alfred University; Kenneth Sandhage, Purdue University

4:00 PM

The Role of Amorphous TiO2 Film in Performance of Si Photoanodes for Hydrogen Production by Photoelectrochemical Water Splitting: Mehrdad Abbasi Gharacheh¹; Jun Meng²; Yutao Dong²; Dane Morgan²; Xudong Wang²; Jinwoo Hwang¹; ¹The Ohio State University; ²University of Wisconsin-Madison

4:20 PM Invited

New Types of Oxides, Chalcogenide and Phosphide Catalyst for Water Splitting: Daniel Chua¹; ¹National University of Singapore

4:50 PM Invited

Engineering Nanoscale Semiconductor-catalyst Interfaces for Low-cost Carbon-free Technology: Flavio de Souza¹; ¹Brazilian Center for Research in Energy and Materials

In-Person Event: OCTOBER 17-20, 2021• COLUMBUS, OHIO On-Demand Content available:

OCTOBER 22-DECEMER 31, 2021

CERAMIC AND GLASS MATERIALS

Glasses and Optical Materials: Current Issues and Functional Applications — Optical Properties and Processing of Amorphous Solids

Sponsored by: ACerS Basic Science Division, ACerS Glass & Optical Materials Division

Program Organizers: Jessica Rimsza, Sandia National Laboratories; Delia Brauer, Otto Schott Institute of Materials Research

Monday PM | October 18, 2021 B231 | Greater Columbus Convention Center

Session Chair: Jungmin Ha, Lawrence Livermore National Laboratory

2:00 PM

3D Printed Germania-titania-silica Glasses to Tune the Refractive Index and Abbe Number: *Jungmin Ha¹*; Koroush Sasan¹; Timothy Yee¹; Andrew Lange¹; Du Nguyen¹; Nikola Dudukovic¹; Oscar Herrera¹; Christopher Mah¹; Rebecca Dylla-Spears¹; ¹Lawrence livermore National Laboratory

2:20 PM

Local Structural Effects on Divalent Europium in Glass Host Materials: Charles Bellows¹; ¹Alfred University

2:40 PM

Optical Properties of One-dimensional Nb2O5 Nanostructures Prepared by Electrospinning: *Tomasz Tanski*¹; Weronika Smok¹; Marta Zaborowska¹; ¹Silesian University of Technology

FUNDAMENTALS AND CHARACTERIZATION

Grain Boundaries, Interfaces, and Surfaces in Ceramics: Fundamental Structure—Property— Performance Relationships — Continuum Approaches

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division

Program Organizers: Rheinheimer Wolfgang, Forschungszentrum Jülich; Catherine Bishop, University of Canterbury; Shen Dillon, University of California, Irvine; Ming Tang, Rice University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology; Melissa Santala, Oregon State University

Monday PM | October 18, 2021 B244/245 | Greater Columbus Convention Center

Session Chairs: Wolfgang Rheinheimer, Forschungszentrum Jülich; John Blendell, Purdue University

2:00 PM Invited

Microstructure-within-a-microstructure: Understanding Critical Structural Variations within Grain Boundary Networks: Timothy Rupert¹; ¹University of California, Irvine

2:40 PM Invited

Elucidating Grain Boundary Motion with 4D Grain Growth Measurements Using Non-destructive X-ray Diffraction Grain Mapping: Amanda Krause¹; ¹University of Florida

3:20 PM Break

3:40 PM

Effect of Sodium on the Processability and Mechanical Properties of Nanocrystalline

Magnesium Aluminate: Isabella Loureiro Muller Costa¹; Ricardo Castro¹; Joice Miagava²; ¹University of California Davis; ²Insper – Institute of Education and Research

FUNDAMENTALS AND CHARACTERIZATION

High Entropy Materials: Concentrated Solid Solutions, Intermetallics, Ceramics, Functional Materials and Beyond II — Materials Discovery and Design II

Sponsored by: TMS Alloy Phases Committee, TMS Mechanical Behavior of Materials Committee

Program Organizers: Michael Gao, National Energy Technology Laboratory; Xingbo Liu, West Virginia University; Peter Liaw, University of Tennessee; Jian Luo, University of California, San Diego; Yiquan Wu, Alfred University; Yu Zhong, Worcester Polytechnic Institute; Mitra Taheri, Johns Hopkins University; Amy Clarke, Colorado School of Mines

Monday PM | October 18, 2021 B131 | Greater Columbus Convention Center

Session Chairs: Dan Thoma, University of Wisconsin-Madison; Keith Knipling, Naval Research Laboratory

2:00 PM Invited

Compositionally Complex Oxides: Synthesis, Characterization, Challenges, and Opportunities: Veerle Keppens¹; ¹University of Tennessee

2:30 PM Invited

High-throughput Design and Processing of MPEAs Using Additive Manufacturing: Dan Thoma¹; Michael Niezgoda¹; Phalgun Nelaturu¹; Zahabul Islam¹; Michael Moorehead¹; Adrien Couet¹; ¹University of Wisconsin-Madison

2:50 PM Invited

Refractory High Entropy Alloys with Balanced Properties Tailored for Service Conditions: Andrew Detor¹; Scott Oppenheimer¹; James Ruud¹; Emily Cheng¹; ¹GE Research

3:10 PM Invited

Microstructures of Al_{2,7}CrFeMnV, Al_{2,7}CrFeTiV, and Al_{2,7}CrMnTiV Highentropy Alloys: Patrick Callahan¹; Keith Knipling¹; ¹Naval Research Laboratory

3:30 PM Break

3:50 PM

Design of TWIP/TRIP Non-equimolar High-entropy Alloys: Xin Wang¹; Rafael Tomás Rodríguez De Vecchis²; Chenyang Li³; Wei Chen³; Wei Xiong²; ¹University of Pittsburgh; ²Physical Metallurgy and Materials Design Laboratory, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA; ³Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, 60616 USA

4:10 PM

Nanostructured Oxide-dispersion-strengthened CoCrFeMnNi Highentropy Alloys: Xiang Zhang¹; Fei Wang¹; Xing-Zhong Li²; Khalid Hattar²; Bai Cui¹; ¹University of Nebraska-Lincoln; ²Sandia National Laboratories

4:30 PM Invited

Exploring the Feasible High Entropy Alloy Space: Raymundo Arroyave¹; ¹Texas A&M University

4:50 PM

Development of Low-cost High Entropy Alloys through Alloy Mixing: *Karthikeyan Hariharan*¹; Katakam Sivaprasad¹; ¹National Institute of Technology, Tiruchirappalli

FUNDAMENTALS AND CHARACTERIZATION

Integration between Modeling and Experiments for Crystalline Metals: From Atomistic to Macroscopic Scales III — Session II

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Levente Balogh, Queen's University; Caizhi Zhou, University of South Carolina; Lei Cao, University of Nevada; Josh Kacher, Georgia Institute of Technology

Monday PM | October 18, 2021 B246 | Greater Columbus Convention Center

Session Chairs: M Arul Kumar, Los Alamos National Laboratory; Aaron Tallman, Los Alamos National Laboratory

2:00 PM Invited

Developing Surrogate Models for Crystal Plasticity-based Creep by Leveraging Macroscale Constitutive Relations: Aaron Tallman¹; Laurent Capolungo¹; ¹Los Alamos National Laboratories

2:30 PM

Weldment Finite Element Modeling and Validation for Integration with CALPHAD Tools: Daniel Bechetti¹; Jacob Steiner¹; Charles Fisher¹; ¹Naval Surface Warfare Center, Carderock Division

2:50 PM

Rapid Screening of High-throughput Ground State Predictions: Sayan Samanta¹; Axel van de Walle¹; ¹Brown University

3:10 PM Invited

Lab-based Diffraction Contrast Tomography: Achieving Large Volume Grain Statistics for Full Field Modeling of Polycrystalline Materials: Jun Sun¹; Jette Oddershede¹; Florian Bachmann¹; Hrishikesh Bale²; William Harris³; Erik Lauridsen¹; ¹Xnovo Technology; ²Carl Zeiss X-ray Microscopy; ³Carl Zeiss Microscopy, LLC

3:50 PM Break

4:10 PM

Physics-based Full-Field Fast Fourier Transform Modeling of Creep Behavior: Application to 347H Steel: Mariyappan Arul Kumar¹; Ricardo Lebensohn¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

4:30 PM

A Physics-based Crystal Plasticity Constitutive Model Incorporating the Dynamic Strain Aging: Application to 347H Steel: Veerappan Prithivirajan¹; Nathan Beets¹; M Arul Kumar¹; Bjorn Clausen¹; Ricardo Lebensohn¹; Laurent Capolungo¹; Los Alamos National Laboratory

4:50 PM

Full-field Modeling of Vacancy Diffusion in a Crystal Plasticity Framework: Aritra Chakraborty¹; Nathan Beets¹; Mariyappan Arul Kumar¹; Ricardo Lebensohn¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

5:10 PM

Simulation of Creep and Uniaxial Strain in 316H Steel via a Fully Mechanistic Fast Fourier Transform Based Crystal Plasticity Constitutive Model: Nathan Beets¹; Laurent Capolungo¹; Mariyappan Arul Kumar¹; Ricardo Lebensohn¹; ¹Los Alamos National Laboratory

PROCESSING AND MANUFACTURING

Light Metal Technology — Forming Technology

Sponsored by: TMS Titanium Committee

Program Organizers: Xiaoming Wang, Purdue University; Yufeng Zheng, University of Nevada-Reno

Monday PM | October 18, 2021 A213 | Greater Columbus Convention Center

Session Chair: Tao Wang, Rio Tinto

2:00 PM

Effect of Vacuum Level on Porosity and Mechanical Properties of Aluminum Alloys in High-pressure Die Casting: Nicole Trometer¹; Emre Cinkilic¹; Larry Godlewski²; Eben Prabhu²; Alan Luo¹; ¹The Ohio State University; ²Ford Motor Company

2:20 PM

Lattice Site Correspondence and Morphology of Al6Mn Precipitate: *Yuchi Wang*¹; Yunzhi Wang¹; Daniel Freiberg²; Yang Huo²; Wendi Zhu²; Robert Williams¹; Mei Li²; ¹Ohio State University; ²Ford

2:40 PM

Comparison of Acoustic Softening Phenomenon in Tensile Tests and Incremental Sheet Forming: Randy Cheng¹; Jiarui Kang²; Xun Liu²; Alan Taub¹; ¹University of Michigan; ²The Ohio State University

3:00 PM

START: Rio Tinto's 'Nutrition Label' for Sustainable Aluminium: $Tao\ Wang^1$: 1 Rio Tinto

CERAMIC AND GLASS MATERIALS

Manufacturing and Processing of Advanced Ceramic Materials — New Opportunities in Ceramic Processing II

Sponsored by: ACerS Manufacturing Division

Program Organizers: Bai Cui, University of Nebraska-Lincoln; James Hemrick, Oak Ridge National Laboratory; Mike Alexander, Allied Mineral Products; Eric Faierson, Quad City Manufacturing Laboratory/Western Illinois University; Keith DeCarlo, Blasch Precision Ceramics

Monday PM | October 18, 2021 B234 | Greater Columbus Convention Center

Session Chairs: Ivar Reimanis, Colorado School of Mines; Jian Luo, University of California, San Diego

2:00 PM Invited

Flash Sintering, Ultrafast Sintering without Electric Fields, and Electric Field Effects on Microstructural Evolution: Jian Luo¹; ¹University of California, San Diego

2:40 PM Invited

High Temperature Coatings for Concentrated Solar Power Receivers: Julia Billman¹; *Ivar Reimanis*¹; Andrea Ambrosini²; Gregory Jackson¹; ¹Colorado School of Mines; ²Sandia National Laboratory

3:20 PM

Green State Joining of Silicon Carbide for High-temperature Applications: Olivia Brandt¹; Rodrigo Orta Guerra¹; Rodney Trice¹; Jeffrey Youngblood¹; ¹Purdue University

3:40 PM Break

4:00 PM

Self-propagating High Temperature Synthesis of Chevrel Phase Compounds: Milind Pawar¹; ¹The Ohio State University

CERAMIC AND GLASS MATERIALS

Phase Transformations in Ceramics: Science and Applications — Experimental Studies on Structure and Control II

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Scott Mccormack, University of California, Davis; Pankaj Sarin, Oklahoma State University; Sanjay V. Khare, University of Toledo; Waltraud Kriven, University of Illinois at Urbana-Champaign

Monday PM | October 18, 2021 B230 | Greater Columbus Convention Center

Session Chair: To Be Announced

2:00 PM Invited

Symmetry-mode Analysis of Phase Transitions in Solids: *Branton Campbell*¹; Harold Stokes²; ¹Brigham Young University; ²Brigham Young Univ

2:30 PM Invited

High Pressure Phase Transformations of Zircon-type Silicate Materials: Xiaofeng Guo¹; Andrew Strzelecki¹; Xiaodong Zhao¹; Jason Baker²; Stella Chariton³; Vitali Prakapenka³; Hongwu Xu⁴; ¹Washington State University; ²Lawrence Livermore National Laboratory; ³The University of Chicago; ⁴Los Alamos National Laboratory

3:00 PM Invited

Initial Stages of Transformation of 2-D Assemblies of Nanosheets to Tunnel Structures: Scott Misture¹; ¹Alfred University

3:30 PM Break

3:50 PM

Crystallographic Studies of the Leucite-pollucite System Synthesized by Geopolymer Crystallization: Andrew Steveson¹; Waltraud Kriven¹; ¹University of Illinois at Urbana-Champaign

4:10 PM

In-situ Phase Equilibria in the TiO₂-HfO₂-WO₃ System up to 1400°C: *Benjamin Hulbert*¹; Dylan Blake¹; Waltraud Kriven¹; ¹University of Illinois at Urbana-Champaign

FUNDAMENTALS AND CHARACTERIZATION

Probing Defect Properties and Behavior under Mechanical Deformation and Extreme Conditions — In Situ and Advanced Characterization of Defects

Sponsored by: TMS Nanomechanical Materials Behavior Committee, TMS Nuclear Materials Committee, TMS Mechanical Bahavior of Materials Committee

Program Organizers: Zhe Fan, Lamar University; Tianyi Chen, Oregon State University; Shijun Zhao, City University of Hong Kong; Mitra Taheri, Johns Hopkins University; Yury Osetskiy, Oak Ridge National Laboratory

Monday PM | October 18, 2021 B140/141 | Greater Columbus Convention Center

Session Chairs: Xiaoqing Pan, University of California Irvine; Xinghang Zhang, Purdue University

2:00 PM Invited

Imaging Electronic Properties of Ferroelectric Interfaces and Domain Walls via 4D STEM: Christopher Addiego¹; Huaixun Huyan¹; Xiaoqing Pan¹; ¹University of California Irvine

2:30 PM Invited

Ultra-high Strength and Plasticity Mediated by Partial Dislocations and Defect Networks: Ruizhe Su¹; Dajla Neffati²; Yashashree Kulkarni²; Xinghang Zhang¹; ¹Purdue University; ²University of Houston

3:00 PM

Probing Materials Properties across Scales with Scanning Diffraction in Transmission Electron Microscopy: Wenpei Gao¹; ¹North Carolina State University

3:20 PM Break

3:40 PM

In-situ Study of Failure Defects in Cu/Nb Nanolaminates under Deformation: Yifan Zhang¹; Nan Li¹; Laurent Capolungo¹; Matt Schneider¹; Rodney McCabe¹; ¹Los Alamos National Laboratory

4:00 PM Invited

In-situ Transmission Electron Microscopy of Intermittent Dislocation Activities and Deformation Mechanisms: *Jian Min Zuo*¹; Haw-Wen Hsiao¹; Yang Hu¹; Qun Yang¹; ¹University of Illinois

4:30 PM

The Effects of Sample-preparation-induced Defects on the Mechanical Properties of Single Crystal Aluminum Nano-pillars: Yang Yang¹; Sarah Wang²; Bin Xiang³; Sheng Yin²; Thomas Pekin²; Xiaoqing Li²; Ruopeng Zhang²; Kayla Yano⁴; David Hwang⁵; Mark Asta¹; Costas Grigoropoulos²; Frances Allen¹; Andrew Minor¹; ¹Lawrence Berkeley National Laboratory; ²UC Berkeley; ³USTC; ⁴PNNL; ⁵Stony Brook University

4:50 PM

In-situ Studies on Radiation Response of a Nanotwinned Steel: *Zhongxia Shang¹*; Tongjun Niu¹; Tianyi Sun¹; Sichuang Xue¹; Wei-Ying Chen²; Meimei Li²; Haiyan Wang¹; Xinghang Zhang¹; ¹Purdue University; ²Argonne National Laboratory

SPECIAL TOPICS

Research Lightning Talks — Research Lightning Talks I

Sponsored by: ACerS President's Council of Student Advisors

Program Organizers: Victoria Christensen, University of California Santa Barbara; Michael Walden, Colorado School of Mines; Erin Louise Valenzuela, University of Birmingham; Katelyn Kirchner, Pennsylvania State University; Andrew Ericks, University of California, Santa Barbara

Monday PM | October 18, 2021 B142/143 | Greater Columbus Convention Center

Session Chairs: Tess Marconie, Purdue University; Averyonna Kimery, Purdue University

2:00 PM Introductory Comments

2:10 PM

Will Low-cost Ceramic Water Filters Really Work?: Ian Nettleship¹; ¹University of Pittsburgh

2:15 PM

Refractories for the Food Industry: Ryan Hershey¹; ¹Allied Mineral Products, Inc.

2:20 PM

Using Unsupervised Learning to Understand Thin Film Growth: Kimberly Gliebe¹; Alp Sehirlioglu¹; ¹Case Western Reserve University

2:25 PM

Direct Ink Writing with Highly Loaded Aqueous Silicon Carbide Suspensions: *Tess Marconie*¹; Kyle Cox¹; Jeffrey Youngblood¹; Rodney Trice¹; ¹Purdue University

2:30 PM

Germanium Photodiodes for Capture of High Energy X-rays: *Joseph Wood*¹; Klaus van Benthem¹; Charles Hunt¹; ¹University of California, Davis

2:35 PM

Joining of Silicon Carbide for High-temperature Applications: *Olivia Brandt*¹; Rodrigo Orta Guerra¹; Rodney Trice¹; Jeffrey Youngblood¹; ¹Purdue University

2:40 PM

Mechanical behavior of bonded-PDMS for biological payloads in microgravity: *Annaliza Perez-Torres*¹; ¹Space Tango

2:45 PM

Perfecting Steel Processing in the 21st Century: Alyssa Stubbers¹; Thomas Balk¹; ¹University of Kentucky

2:50 PM

Superalloy Development for Specific Applications: A Low CTE Alloy: Thomas Mann¹; ¹Purdue University

MATERIALS-ENVIRONMENT INTERACTIONS

Thermodynamics of Materials in Extreme Environments — Thermodynamics and Stabilities of Alloys and Ceramics

Sponsored by: ACerS Basic Science Division, ACerS Energy Materials and Systems Division

Program Organizers: Xiaofeng Guo, Washington State University; Kristina Lilova, Arizona State University; Kyle Brinkman, Clemson University; Alexandra Navrotsky, Arizona State University; Jake Amoroso, Savannah River National Laboratory; Xingbo Liu, West Virginia University; Gustavo Costa, NASA Glenn Research Center

Monday PM | October 18, 2021 A221 | Greater Columbus Convention Center

Session Chairs: Kristina Lilova, Arizona State University; Xiaofeng Guo, Washington State University

4:00 PM Invited

Stability of Multicomponent Rare Earth Silicates for Environmental Barrier Coating Application: Mackenzie Ridley¹; Cameron Miller¹; Rebekah Webster¹; Hans Olson¹; Alejandro Salanova¹; Kathleen Tomko¹; Jon Ihlefeld¹; Cormac Toher²; Patrick Hopkins¹; *Elizabeth Opila*¹; ¹University of Virginia; ²Duke University

4:30 PM Invited

Directions of Zero Thermal Expansion in Anisotropic Oxides: *Scott Mccormack*¹; William Wheeler²; Benjamin Hulbert²; Waltraud Kriven²; ¹University of California, Davis; ²University of Illinois at Urbana-Champaign

5:00 PM

A First-principles-based Study of Oxidation Thermodynamics in Refractory High Entropy Alloys: Adib Samin¹; ¹Air Force Institute of Technology

SPECIAL TOPICS

MS&T21 Plenary Session — MS&T21 Plenary Session

Tuesday AM | October 19, 2021 Union Station Ballroom | Greater Columbus Convention Center

8:00 AM Welcome Comments

8:05 AM Introductory Comments

8:10 AM Plenary

AIST Adolf Martens Memorial Steel Lecture: Iron: The Ubiquitous Element: Anil Sachdev¹; ¹General Motors Global Research and Development

8:50 AM Award Presentation

8:55 AM Introductory Comments

9:00 AM Plenary

TMS Institute of Metals/Robert Franklin Mehl Award for MS&T21: New Superalloys in the Co-Ni Design Space for 3D Printing: *Tresa Pollock*¹; ¹University of California, Santa Barbara

9:40 AM Award Presentation

9:45 AM Introductory Comments

9:50 AM Plenary

ACerS Edward Orton, Jr. Memorial Lecture: Turning Down the Heat in Sintering to Enable the Unification of all Materials: Clive Randall¹; ¹Pennsylvania State University

10:30 AM Award Presentation

10:35 AM Concluding Comments

PROCESSING AND MANUFACTURING

13th Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing — Novel Approaches to Sustainable Manufacturing II

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Surojit Gupta, University of North Dakota; Rajiv Asthana, University of Wisconsin; Hisayuki Suematsu, Nagaoka University of Technology; Mritunjay Singh, Ohio Aerospace Institute; Enrico Bernardo, University of Padova; Yiquan Wu, Alfred University; Zhengyi Fu, Wuhan University of Technology; Allen Apblett, Oklahoma State University; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology

Tuesday PM | October 19, 2021 A212 | Greater Columbus Convention Center

Session Chair: Surojit Gupta, University of North Dakota

2:00 PM

A Comparative Study of Vibration Signatures of FDM 3D Printers under Different States of Operation: Roshan Mishra¹; Kunal Kate¹; ¹University of Louisvillle

2:20 PM

A Sustainable and Energy-efficient Electrochemical Technology for Dewatering of Cellulosic Nanomaterials: *Huong Le*¹; Santosh Vijapur¹; Timothy D. Hall¹; E. Jennings Taylor¹; Maria Inman¹; Stephen Snyder¹; Kim Nelson²; ¹Faraday Technology; ²AVAPCO LLC

2:40 PM

Low-cost Ceramic Composite Membranes for Ultrafiltration of Produced Water: *Christine Watson*¹; Pankaj Sarin¹; V. V. Rohit Bukka¹; ¹Oklahoma State University

ARTIFICIAL INTELLIGENCE

Accelerating Materials Science with Big Data and Machine Learning — Session II

Program Organizers: Huan Tran, Georgia Institute of Technology; Muratahan Aykol, Toyota Research Institute

Tuesday PM | October 19, 2021 A123 | Greater Columbus Convention Center

Session Chair: Christopher Kuenneth, Georgia Institute of Technology

2:00 PM Invited

Data Science as Bridge – Materials Characterization and Modeling: Maria Chan¹; ¹Argonne National Laboratory

2:40 PM

Learning Synthesis: Engineering Metal Nanoclusters for Specific Material Properties: Ryan McCarty¹; ¹University of California Irvine

3:00 PM

Characterization of Microscopic Deformation of Materials Using Deep Learning Methods: Kavindu Wijesinghe¹; Janith Wanni¹; Natasha Banerjee¹; Sean Banerjee¹; Ajit Achuthan¹; ¹Clarkson University

3:20 PM

A Data-driven Simulator for High-throughput Prediction of Electromigration-mediated Damage in Polycrystalline Interconnects: Peichen Wu¹; William Farmer¹; Kumar Ankit¹; ¹Arizona State University

SPECIAL TOPICS

ACerS Frontiers of Science and Society: The Rustum Roy Lecture

Sponsored by: ACerS

Tuesday PM | October 19, 2021 B130 | Greater Columbus Convention Center

1:00 PM Invited

Advanced Ceramics for Energy and Environmental Technology: Alexander Michaelis¹; ¹Fraunhofer Institute for Ceramic Technologies & Systems IKTS

ADDITIVE MANUFACTURING

Additive Manufacturing Modeling and Simulation: Microstructure, Mechanics, and Process — AM Modeling - Machine Learning and Artificial Intelligence

Sponsored by: TMS Computational Materials Science and Engineering Committee

Program Organizers: Jing Zhang, Indiana University – Purdue University Indianapolis; Brandon McWilliams, US Army Research Laboratory; Li Ma, Johns Hopkins University Applied Physics Laboratory; Yeongil Jung, Changwon National University

Tuesday PM | October 19, 2021 A113 | Greater Columbus Convention Center

Session Chairs: Jing Zhang, Indiana University - Purdue University Indianpolis; Brandon McWilliams, CCDC Army Research Laboratory; Li Ma, Johns Hopkins University Applied Physics Laboratory; Yeon-Gil Jung, Changwon National University

2:00 PM

Deep Reinforcement Learning for Defect Mitigation in Laser Powder Bed Fusion

: Francis Ogoke¹; Amir Barati Farimani¹; ¹Carnegie Mellon University

2:20 PM

Online Characterization of Melt Pool Dimensions Using Acoustic Monitoring and Deep Learning: Evan Diewald¹; Christian Gobert¹; ¹Carnegie Mellon University

2:40 PM

Machine Learning – Assisted Navigation in the Additive Manufacturing Design Space: Maher Alghalayini¹; Surya Kalidindi²; Chris Paredis¹; Fadi Abdeljawad¹; ¹Clemson University; ²Georgia Institute of Technology

3:00 PM

Process Consistency in Laser Powder Bed Fusion Observed Through Large Scale Single Bead Melt Pool Measurements: Christian Gobert¹; Evan Diewald¹; Jack Beuth¹; ¹Carnegie Mellon University

3:20 PM

Melt Pool Scale Modeling of Austenitic Stainless Steel Solidification Features in Laser Powder Bed Fusion: Joseph Aroh¹; P. Chris Pistorius¹; Anthony Rollett¹; ¹Carnegie Mellon University

3:40 PM

Gas Adsorption Analysis in 3D Printed Metal Organic Frameworks: *Tejesh Dube*¹; Hye-Yeong Park²; Yeon-Gil Jung²; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis; ²Changwon National University

ADDITIVE MANUFACTURING

Additive Manufacturing of Ceramic-based Materials: Process Development, Materials, Process Optimization and Applications — Session III: Laser Powder Bed Fusion and Novel AM Processes

Sponsored by: ACerS Engineering Ceramics Division, ACerS Basic Science Division, ACerS Manufacturing Division

Program Organizers: Xuan Song, University of Iowa; Lei Chen, University of Michigan-Dearborn; Xiangyang Dong, Missouri University of Science and Technology; Yiquan Wu, Alfred University; Paolo Colombo, University of Padova; Rajendra Bordia, Clemson University; Long-Qing Chen, Pennsylvania State University

Tuesday PM | October 19, 2021 A112 | Greater Columbus Convention Center

Session Chair: Fei Peng, Clemson University

2:00 PM Invited

Machine-learning-based Microstructure-property Prediction Enabled by High-throughput Ceramic Sample-array Preparation Using Integrated Additive/Subtractive Manufacturing: Xiao Geng¹; Jianan Tang¹; Dongsheng Li²; Yunfeng Shi³; Rajendra Bordia¹; Jianhua Tong¹; Xiao Hai¹; Fei Peng¹; ¹Clemson University; ²Advanced Manufacturing LLC; ³Rensselaer Polytechnic Institute

2:30 PM

Direct-Ink-Writing and Cold-Sintering of ZnO Ceramics: *Russell Maier*¹; Igor Levin¹; Lawrence Friedman¹; Andrew Allen¹; Abhay Goyal¹; Nicos Martys¹; ¹National Institute of Standards and Technology

2:50 PM

Additively Manufactured Carbon/Carbon Composites via Direct Ink Writing of Phenolic Resin Precursors: Caitlyn Clarkson¹; Connor Wyckoff¹; William Costakis¹; Matthew Dickerson¹; Hilmar Koerner¹; ¹Air Force Research Laboratory

3:10 PM

Bulk Ferroelectric Metamaterial with Giant Piezoelectric Coefficients and Biomimetic Mechanical Property from Additive Manufacturing: Jun Li¹; ¹University of Wisconsin-Madison

ADDITIVE MANUFACTURING

Additive Manufacturing of High and Ultra-High Temperature Ceramics and Composites: Processing, Characterization and Testing — Laser-based Additive Manufacturing, New Methods, and Testing

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Corson Cramer, Oak Ridge National Laboratory; Greg Hilmas, Missouri University of Science and Technology; Lisa Rueschhoff, Air Force Research Laboratory

Tuesday PM | October 19, 2021 A111 | Greater Columbus Convention Center

Session Chair: Lisa Rueschhoff, Air Force Research Laboratory

2:00 PM Invited

Additive Slurry Drying as a Novel Method for Realizing Large Ceramic Components Using AM: Johannes Homa¹; Yannik Zieger¹; Martin Schwentenwein¹; Shawn Allan²; ¹Lithoz GmbH; ²Lithoz America LLC

2:40 PM

Additive Manufacturing of ZrB2–ZrSi2 Composites Using an Electron Beam Melting (EBM) Process: Cheryl Xu¹; ¹North Carolina State University

3:00 PM

Process Development and Optimization for The Laser Powder Bed Fusion of WC-Ni Cermet Composites: Edgar Mendoza Jimenez¹; Baby Reeja-Jayan¹; Jack Beuth¹; ¹Carnegie Mellon University

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Equipment, Instrumentation and In-Situ Process Monitoring — Process Monitoring and Modeling Methods

Program Organizers: Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Joy Gockel, Colorado School of Mines; Sneha Prabha Narra, Carnegie Mellon University

Tuesday PM | October 19, 2021 A121 | Greater Columbus Convention Center

Session Chair: Sneha Prabha Narra, Carnegie Mellon University

2:00 PM Invited

Combined In-situ Monitoring of Meltpool, Powder Layer, and Part Topography for Laser Powder Bed Fusion (LPBF) Based Metal Additive Manufacturing: Xiayun Zhao¹; ¹University of Pittsburgh

2:40 PM

Melt Pool Level Flaw Detection in Laser Hot Wire Additive Manufacturing Using a Trained Convolutional Long Short Term Memory Autoencoder: Brandon Abranovic¹; Sulagna Sarkar¹; Jack Beuth¹; ¹Carnegie Mellon University

3:00 PM

Materials Characterization of Anomalies Identified Through In-situ Process Monitoring Data Analytics: *Jonathan Ciero*¹; Dylan Christman¹; Kyle Ryan²; Shuchi "SK" Khurana³; Thomas Spears²; Joy Gockel¹; ¹Wright State University; ²Open Additive, LLC; ³Addiguru

3:20 PM

Physics Guided Machine Learning DED Melt Pool Width Prediction: Brett Diehl¹; Clara Mock²; Lester Hitch²; Brandon McWilliams²; Berend Rinderspracher²; ¹Oak Ridge Associated Universities; ²CCDC Army Research Laboratory

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Microstructure, Properties and Alloy Development — Ti-/Co-/Cr-/Cu-based Alloys

Program Organizers: Prashanth Konda Gokuldoss, Tallinn University of Technology; Juergen Eckert, Erich Schmid Institute of Materials Science; Zhi Wang, South China University of Technology

Tuesday PM | October 19, 2021 A115 | Greater Columbus Convention Center

Session Chair: Rangasayee Kannan, Oak Ridge National Laboratory

2:00 PM

Designing a Beta Titanium Alloy with High Strength and Low Stiffness via Additive Manufacturing: Yi Dan Wang¹; Sravya Tekumalla¹; Matteo Seita¹; ¹Nanyang Technological University

2:20 PM

Evaluation of In-situ Alloyed, Additively Manufactured GRCop-42: *David Scannapieco*¹; David Ellis²; John Lewandowski¹; ¹Case Western Reserve University; ²NASA Glenn Research Center

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals:

ICME Gaps: Material Property and Validation Data to Support Certification — Data Applications: Material Property and Validation Data to Support Certification

Sponsored by: TMS: Integrated Computational Materials Engineering Committee, TMS Additive Manufacturing Bridge Committee

Program Organizers: Joshua Fody, NASA Langley Research Center; Edward Glaessgen, NASA Langley Research Center; Christapher Lang, NASA Langley Research Center; Greta Lindwall, KTH Royal Institute of Technology; Michael Sansoucie, NASA Marshall Space Flight Center; Mark Stoudt, National Institute of Standards and Technology

Tuesday PM | October 19, 2021 A114 | Greater Columbus Convention Center

Session Chairs: Mark Stoudt, NIST; Seth Strayer, University of Pittsburgh

2:00 PM Invited

Lessons Learned from Calibration and Validation of Process Models for Laser Powder Bed Fusion: Albert To¹; Florian Dugast¹; Seth Strayer¹; Wen Dong¹; Xuan Liang¹; Qian Chen¹; Hai Tran¹; Shawn Hinnebusch¹; Xavier Jimenez¹; ¹University of Pittsburgh

2:30 PM

Transferability of Terrestrial Development of Metal Additive to Extraterrestrial Applications: *Judy Schneider*¹; ¹University of Alabama at Huntsville

2:50 PM Invited

ICME Gap Analysis for Materials Design and Process Optimization in Additive Manufacturing: $Wei\ Xiong^1$; 1 University of Pittsburgh

3:20 PM Invited

Enabling Quality Assurance by Completing the Process-Property-Performance Paradigm for Additive Manufacturing: Peter Collins¹; Ilowa State University

3:50 PM

An ICME Approach for Designing Appropriate Heat Treatments in Additively Manufactured Nitrogen Atomized 17-4PH Stainless Steel: James Zuback¹; Mark Stoudt¹; Daniel Gopman¹; Maureen Williams¹; Carelyn Campbell¹; ¹NIST

4:10 PM Keynote

Critical Issues and Gaps in Testing and Characterization Data for Computational Materials in Qualification and Certification of Additively Manufactured Metallic Materials: *Michael Gorelik*¹; Edward Glaessgen²; ¹Federal Aviation Administration; ²NASA Langley Research Center

ADDITIVE MANUFACTURING

Additive Manufacturing: Processing, Microstructure and Material Properties of Titanium-based Materials — Session III

Sponsored by: TMS Titanium Committee

Program Organizers: Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Peeyush Nandwana, Oak Ridge National Laboratory; Rongpei Shi, Lawrence Livermore National Laboratory

Tuesday PM | October 19, 2021 A120 | Greater Columbus Convention Center

Session Chair: Ulf Ackelid, Freemelt AB

2:00 PM

Examining the Role of Parent Grain Orientations on the Texture and Physical Properties of Additively Manufactured Ti 6-4 Alloys: *Michael Highmstad*¹; Pat Trimby¹; ¹Oxford Instruments

2:20 PM

On the Use of Defects as Microstructural Informants in EBM Ti-6Al-4V: Katie O'Donnell¹; Maria Quintana¹; Matthew Kenney¹; Peter Collins¹; Ilowa State University

2:40 PM

Use of Small Geometry Specimens to Determine the Fracture and Fatigue Crack Growth Properties of Additively Manufactured Ti-6Al-4V via DED Technique for Repair: Sammy Ojo¹; Sulochana Shrestha¹; Joseph El Rassi¹; Manigandan Kannan¹; Gregory Morscher¹; Andrew Gyekenyesi¹; Onome Scott-Emuakpor¹; ¹University of Akron

3:00 PN

Vibration Bending Fatigue Analysis of Additively Repaired Ti-6Al-4V Airfoil Blades: Lucas Smith¹; Onome Scott-Emuakpor²; Joy Gockel³; Dino Celli²; Brian Runyon²; ¹Ohio Aerospace Institute; ²Air Force Research Laboratory; ³Wright State University

3:20 PM

Influence of Foreign-Object Damage on the High Cycle Fatigue Properties of Direct Energy Deposition Repaired Ti-6Al-4V: Sulochana Shrestha¹; Manigandan Kannan¹; Gregory Morscher¹; Andrew Gyekenyesi²; Onome Scott-Emuakpor³; ¹University of Akron; ²Ohio Aerospace Institute; ³Aerospace Systems Directorate

ENERGY

Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments — Thermomechanical Testing and In Situ Environments

Sponsored by: TMS Nuclear Materials Committee

Program Organizers: Cody Dennett, Idaho National Laboratory; Samuel Briggs, Oregon State University; Christopher Barr, Naval Nuclear Laboratory; Michael Short, Massachusetts Institute of Technology; Janelle Wharry, Purdue University; Cheng Sun, Idaho National Laboratory; Caitlin Taylor, Los Alamos National Laboratory; Emily Aradi, University of Manchester; Khalid Hattar, Sandia National Laboratories

Tuesday PM | October 19, 2021 A215 | Greater Columbus Convention Center

Session Chairs: Charles Hirst, Massachusetts Institute of Technology; Michael Short, Massachusetts Institute of Technology

2:00 PM Invited

Development of In-situ Atomic Scale Defect Spectroscopy during Ion Irradiation: Farida Selim¹; A Jones¹; Y Wang²; S Agarwal¹; H Kim²; P Hosemann³; B Uberuaga²; ¹Bowling Green State University; ²Los Alamos National Laboratory; ³university of California Berkeley

2:20 PM

In-situ Radiological Containment Sample Environments: A review of Capability and Compromises at X-ray and Neutron Sources: *D. Travis Carver*¹; ¹Los Alamos National Laboratory

2:40 PM

Finding a Balance in FeCrAl Alloys: Utilizing Advanced Characterization, Testing, and Machine Learning to Balance Properties: Andrew Hoffman¹; Vipul Gupta¹; Daniel Ruscitto¹; Bojun Feng¹; Sayan Ghosh¹; Raul Rebak¹; ¹GE Research

3:00 PM Invited

Revealing Hidden Defects via Stored Energy Measurements of Radiation Damage: Charles Hirst¹; Fredric Granberg²; Penghui Cao³; Scott Middlemas⁴; R. Scott Kemp¹; Ju Li¹; Kai Nordlund²; Michael Short¹; ¹Massachusetts Institute of Technology; ²University of Helsinki; ³University of California, Irvine; ⁴Idaho National Laboratory

3:20 PM Invited

Moduli Measurements of Fuels and Cladding Materials via Resonant Ultrasound Spectroscopy: Tarik Saleh¹; Mathew Hayne¹; Scarlett Widgeon Paisner¹; Joshua White¹; ¹Los Alamos National Laboratory

3:40 PM

In Situ Transient Grating Spectroscopy for Rapid Radiation Tolerance Characterization: Benjamin Dacus¹; ¹Massachusetts Institute of Technology

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Materials for Harsh Environments — Session II

Sponsored by: ACerS Electronics Division

Program Organizers: Navin Manjooran, Solve Technology and Research, Inc.; Gary Pickrell, Virginia Tech

Tuesday PM | October 19, 2021 A223 | Greater Columbus Convention Center

Session Chairs: Gary Pickrell, Professor, Virginia Tech; Navin Manjooran, Chairman, Solve

2:00 PM Keynote

RF Radomes and IR Windows for Hypersonic Flight: Material Requirements and Development of Ceramic Processing Routes for Success: Rodney Trice¹; Averyonna Kimery¹; Ashwin Sivakumar¹; Jeffrey Youngblood¹; Carlos Martinez¹; Andrew Schlup²; ¹Purdue University; ²UES

2:30 PM

Novel Non-aqueous Gelcasting of UHTCs for Advanced Complex Shape Manufacturing: *Julia Goyer*¹; Carolina Tallon¹; ¹Virginia Tech

2:50 PM

High Temperature Mixed Deposit and Oxidation Degradation of a Coated and Uncoated Ni-based Superalloys: Matthew Kovalchuk¹; Brian Gleeson¹; ¹University of Pittsburgh

3:10 PM

Features of the Formation of the Structure and Properties of Corrosion-resistant Steel during Heat Treatment: Valeriy Mishchenko¹; Olha Bolsun¹; Svitlana Mudra¹; Sergy Sheyko¹; ¹Zaporizhzhia National University

ELECTRONIC AND MAGNETIC MATERIALS

Advances in Dielectric Materials and Electronic Devices — Modeling

Sponsored by: ACerS Electronics Division

Program Organizers: Amar Bhalla, University of Texas; Ruyan Guo, University of Texas at San Antonio; Rick Ubic, Boise State University; Matjaž Spreitzer, Jožef Stefan Institute

Tuesday PM | October 19, 2021 B235 | Greater Columbus Convention Center

Session Chair: Ruyan Guo, University of Texas at San Antonio

2:00 PM

Investigation of Electroplated 3D Printed Antennas: Muneer Barnawi¹; Trenton Cersoli¹; Kerry Johnson¹; Edward Burden¹; Eric MacDonald¹; Pedro Cortes¹; ¹Youngstown State University

2:20 PM

NSMM Modeling of Materials, Including Dipole Engineered Novel Relaxors: Steven Tidrow¹, ¹Alfred University

2:40 PM

Topological Insulator Design for Quantum Computers Targeting BSTS Single Crystal Fabrication: Husain Alnaser; 1

IRON AND STEEL (FERROUS ALLOYS)

Advances in Ferrous Metallurgy — Developments in Testing and Processing

Sponsored by: AIST Metallurgy—Processing, Products and Applications Technology Committee

Program Organizers: Daniel Baker, General Motors Corporation; Emmanuel De Moor, Colorado School of Mines; Kishlay Mishra, Nucor Castrip Arkansas LLC; Lijia Zhao, ArcelorMittal Global R&D

Tuesday PM | October 19, 2021 A210 | Greater Columbus Convention Center

Session Chair: To Be Announced

2:00 PM

Effect of Alloying Content on Fractional Softening Behavior and Microstructural Evolution During Double-twist Torsion Testing of Microalloyed Steels: *Trevor Ballard*¹; Emmanuel De Moor¹; ¹Advanced Steel Processing and Products Research Center, Colorado School of Mines

2:20 PM

The Effect of Energy-power Parameters of Hot Rolling on Structure and Properties of Low Alloyed Steels: *Valeriy Mishchenko*¹; Sergy Sheyko¹; Vadim Shalomeev¹; ¹Zaporizhzhia National University

2:40 PM

Reducing the Effects of Texture on Phase Fraction Measurement of Retained Austenite Using X-ray Diffraction: *Michael Cox*¹; Adam Creuziger²; Kip Findley¹; ¹Colorado School of Mines; ²National Institute of Standards and Technology

3:00 PM

3D Non-destructive Characterization of Texture Evolution in Electrical Steels with Lab-based Diffraction Contrast Tomography: Jun Sun¹; Florian Bachmann¹; Jette Oddershede¹; Hrishikesh Bale²; *William Harris*³; Erik Lauridsen¹; ¹Xnovo Technology; ²Carl Zeiss X-ray Microscopy; ³Carl Zeiss Microscopy, LLC

3:20 PM

Hole Expansion Performance of Three High Strength Steels: Observation of Room Temperature Strain Ageing Phenomena: Rachael Stewart¹; Mike Settle¹; ¹Cleveland-Cliffs Steel Corporation

NANOMATERIALS

Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — Nanocomposites & 2D Materials

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Polytechnic Institute and State University; Edward Gorzkowski, Naval Research Laboratory; Jian Shi, Rensselear Polytechnich University; Michael Naguib, Tulane University; Sanjay Mathur, University of Cologne

Tuesday PM | October 19, 2021 B240/241 | Greater Columbus Convention Center

Session Chairs: Sanjay Mathur, University of Cologne; Haitao Zhang, University of North Carolina at Charlotte

2:00 PM Invited

2d Crystalline Donors and Acceptors: Modulation Doping in Atomically-thin Heterostructures: Erik Henriksen¹; ¹Washington University in St. Louis

2:30 PM

Thickness-dependent Piezoelectric Property of Two-dimensional Zinc Oxide Nanosheets with Unit Cell Resolution: Corey Carlos¹; Yizhan Wang¹; Jingyu Wang¹; Jun Li¹; Xudong Wang¹; ¹University of Wisconsin - Madison

2:50 PM

Processing and Mechanical Properties of 3YSZ-Al₂O₃ Core-Shell Nanocomposite Ceramics: Kevin Anderson¹; Benjamin Greenberg¹; James Wollmershauser¹; Boris Feigelson¹; ¹U.S. Naval Research Laboratory

PROCESSING AND MANUFACTURING

Development of Light Weight Alloys and Composites — Microstructure and Properties: Composites III

Program Organizers: Ramasis Goswami, Naval Research Laboratory; Nikhil Gupta, New York University; Tanjore Jayaraman, University of Michigan-Dearborn; Aashish Rohatgi, Pacific Northwest National Laboratory

Tuesday PM | October 19, 2021 A214 | Greater Columbus Convention Center

Session Chairs: Tanjore Jayaraman, College of Engineering and Computer Science, University of Michigan-Dearborn; Ramasis Goswami, NRL

2:00 PM

Development of Bulk Nanocrystalline Aluminum Materials with Enhanced Mechanical Properties: Pradeep Menezes¹; Sridhar Lanka¹; Raven Maccione¹; Bhaskar Vadlamani¹; Manoranjan Misra¹; ¹University of Nevada Reno

2:30 PM

Tensile Properties of Epoxy Composites Reinforced with Continuous Mixed Natural Fibers: Frederico Margem¹; Niander Aguiar¹; Fernanda Rangel¹; João Dornelas¹; ¹Uniredentor

3:00 PM

The Effect of Multiple Age Treatment on Mechanical Properties of 7075 Al Alloy: AHM Esfakur Rahman¹; Issam Abu-Mahfouz¹; Amit Banerjee¹; ¹Pennsylvania State University Harrisburg

IRON AND STEEL (FERROUS ALLOYS)

Developments in Plate and Line Pipe Steels — Developments in Plate and Line Pipe Steels

Sponsored by: AIST Metallurgy—Processing, Products and Applications Technology Committee

Program Organizers: Daniel Baker, General Motors Corporation; Ashish Singh, Nucor Steel Arkansas; Pello Uranga, CEIT and TECNUN (University of Navarra)

Tuesday PM | October 19, 2021 A211 | Greater Columbus Convention Center

Session Chair: To Be Announced

2:00 PM

Modified Charpy V-notch Testing of Wind Tower Steels: *Keith Taylor*¹; Laura Dawson²; Matthew Werner¹; ¹SSAB Americas; ²Virginia Polytechnic Institute and State University

2:20 PM

The Formation of Structure and Properties of Low-alloyed Steels in Hot Deformation Process: Valeriy Mishchenko¹; Sergy Sheyko¹; Vadim Shalomeev²; ¹Zaporizhzhia National University; ²National University "Zaporizhzhia Polytechnic"

ENERGY

Energy Materials for Sustainable Development — Storage Batteries I

Sponsored by: ACerS Energy Materials and Systems Division

Program Organizers: Armin Feldhoff, Leibniz University Hannover; Kyle Brinkman, Clemson University; Krista Carlson, University of Utah; Eva Hemmer, University of Ottawa; Nikola Kanas, Institute Biosense, University of Novi Sad; Kjell Wiik, Norwegian University of Science and Technology; Lei Zuo, Virginia Tech; Stephanie Lee, Stevens Institute of Technology; Muhammad Hajj, Stevens Institute of Technology

Tuesday PM | October 19, 2021 A216 | Greater Columbus Convention Center

Session Chairs: Jeffrey Fergus, Auburn University; Giovanni Fanchini, University of Western Ontario

2:00 PM Invited

Challenges and Opportunities of Oxide-based Cathodes for Aqueous Zn-ion Batteries: Kevin Huang¹; ¹University of South Carolina

2:30 PM

Reducing the Sintering Temperature of Ceramic Solid-State Batteries with the Cold Sintering Process: Zane Grady¹; Joo-Hwan Seo¹; Arnaud Ndayishimiye¹; Clive Randall¹; ¹The Pennsylvania State University

2:50 PM Invited

Nanoscale Geometry and Point Defects in Supercapacitor Electrodes: Scott Misture¹; ¹Alfred University

3:10 PM

Doping Study of Nanoscale Lithium Cobalt Oxide Surfaces and Grain Boundaries: Spencer Dahl¹; Blas Uberuaga²; Ricardo Castro¹; University of California, Davis; ²Los Alamos National Laboratory

CERAMIC AND GLASS MATERIALS

Engineering Ceramics: Microstructure-Property-Performance Relations and Applications — Engineering Ceramics

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Young-Wook Kim, University of Seoul; Hua-Tay Lin, Guangdong University of Technology; Junichi Tatami, Yokohama National University

Tuesday PM | October 19, 2021 B233 | Greater Columbus Convention Center

Session Chair: Ivar Reimanis, Colorado School of Mines

2:00 PM Invited

Tracking the State of Transition Elements Ni and Fe in Oxide Microstructures: Michael Knight¹; *Ivar Reimanis*¹; Dylan Jennings¹; Sandrine Ricote¹; Wolfgang Rheinheimer²; ¹Colorado School of Mines; ²Julich Research Center

CERAMIC AND GLASS MATERIALS

Glasses and Optical Materials: Current Issues and Functional Applications — ACerS Alfred R. Cooper Award Session

Sponsored by: ACerS Basic Science Division, ACerS Glass & Optical Materials Division

Program Organizers: Jessica Rimsza, Sandia National Laboratories; Delia Brauer, Otto Schott Institute of Materials Research

Tuesday PM | October 19, 2021 B231 | Greater Columbus Convention Center

Session Chair: Steve Martin, Iowa State University

2:00 PM Introductory Comments

2:10 PM Invited

Cooper Distinguished Lecture: Structure and Ion Dynamics in Glass: *Efstratios Kamitsos*¹; ¹Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation

2:50 PM Question and Answer Period/Presentation of Award

3:00 PM Invited

Cooper Scholar: Study of the Anomalous Viscosity in Invert NaPSO Glass for the Development of Thin Solid-state Electrolytes: Jacob Lovi¹; ¹Iowa State University

3:20 PM Question and Answer Period/Presentation of Award

3:30 PM Invited

Cooper Scholar 1st Runner-up: Relationship between Number of Non-bridging Oxygens and Ionic Conductivity Discontinuity in xLi2O-(1-x) B2O3, with x = 0.67: Graham Beckler¹; ¹Coe College

3:50 PM Question and Answer Period/Presentation of Award

4:00 PM Invited

Cooper Scholar 2nd Runner-up: Solution-processed Telluride Glass for Far-infrared Applications: Lauren Moghimi¹; ¹University of Arizona

4:20 PM Question and Answer Period/Presentation of Award

FUNDAMENTALS AND CHARACTERIZATION

Grain Boundaries, Interfaces, and Surfaces in Ceramics: Fundamental Structure—Property— Performance Relationships — Field Assisted Processes and Mechanics

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division

Program Organizers: Rheinheimer Wolfgang, Forschungszentrum Jülich; Catherine Bishop, University of Canterbury; Shen Dillon, University of California, Irvine; Ming Tang, Rice University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology; Melissa Santala, Oregon State University

Tuesday PM | October 19, 2021 B244/245 | Greater Columbus Convention Center

Session Chairs: Xufei Fang, TU Darmstadt; Timofey Frolov, Lawrence Livermore National Laboratory

2:00 PM

Hall-petch Behavior in Stoichiometric and Al-rich Nanocrystalline ZnAl₂O₄: Luis Sotelo Martin¹; Ricardo Castro¹; ¹University of California, Davis

2:20 PM

Surface and Fracture Energy in Layered Ceramics: Oriol $Gavalda-Diaz^1$; Katharina Marquardt 1 ; Eduardo Saiz 1 ; Finn Giuliani 1 ; 1 Imperial College London

FUNDAMENTALS AND CHARACTERIZATION

High Entropy Materials: Concentrated Solid Solutions, Intermetallics, Ceramics, Functional Materials and Beyond II — Processing and Properties I

Sponsored by: TMS Alloy Phases Committee, TMS Mechanical Behavior of Materials Committee

Program Organizers: Michael Gao, National Energy Technology Laboratory; Xingbo Liu, West Virginia University; Peter Liaw, University of Tennessee; Jian Luo, University of California, San Diego; Yiquan Wu, Alfred University; Yu Zhong, Worcester Polytechnic Institute; Mitra Taheri, Johns Hopkins University; Amy Clarke, Colorado School of Mines

Tuesday PM | October 19, 2021 B131 | Greater Columbus Convention Center

Session Chairs: Oleg Senkov, Air Force Research Laboratory; Michael Mills, Ohio State University

2:00 PM Invited

Insights into the Deformation Processes of a Refractory Complex Concentrated Alloy Exhibiting B2-type Order: Jean-Philippe Couzinie¹; Milan Heczko²; Veronika Mazanova²; Oleg Senkov³; Rajarshi Banerjee⁴; Maryam Ghazisaeidi⁵; *Michael Mills*²; ¹Université Paris Est & Center for Electron Microscopy and Analysis, The Ohio State University; ²Center for Electron Microscopy and Analysis, The Ohio State University; ³Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB; ⁴University of North Texas; ⁵The Ohio State University

2:20 PM Invited

Deformation Behavior in the Refractory High-entropy Alloys: *Chanho Lee*¹; George Kim²; Yi Chou³; Michael Gao⁴; Ke An⁵; Gian Song⁶; Yi-Chia Chou³; Wei Chen²; Saryu Fensin¹; Peter Liaw⁷; ¹Los Alamos National Laboratory; ²Illinois Institute of Technology; ³National Chiao Tung University; ⁴National Energy Technology Laboratory/Leidos Research Support Team; ⁵Oak Ridge National Laboratory; ⁶Kongju National University; ⁷University of Tennessee

2:40 PM

A Low-temperature Chemical/Powder Metallurgical Route for Generating Fine-grained Refractory Complex Concentrated Alloys: Kenneth Sandhage¹; Sona Avetian¹; Mario Caccia¹; Michael Titus¹; ¹Purdue University

3:00 PM

The Cyclic Plastic Strain Localization and the Fatigue Crack Initiation in Equiatomic CrCoNi Medium-entropy Alloy: Veronika Mazanova¹; Milan Heczko¹; Connor Slone²; Shih Mulaine¹; Easo P. George³; Maryam Ghazisaeidi¹; Jaroslav Polak⁴; Michael J. Mills¹; ¹The Ohio State University; ²Exponent; ³Oak Ridge National Laboratory; ⁴Institute of Physics of Materials CAS

3:20 PM

The Cyclic Plastic Response and the Fatigue Induced Microstructural Changes of Equiatomic CrCoNi Medium-entropy Alloy: Milan Heczko¹; Veronika Mazánová¹; Connor Slone²; Ivo Kubena³; Mulaine Shih¹; Tomáš Kruml³; Easo George⁴; Maryam Ghazisaeidi¹; Jaroslav Polák³; Michael Mills¹; ¹The Ohio State University; ²Exponent; ³Institute of Physics of Materials CAS; ⁴Oak Ridge National Laboratory

In-Person Event: OCTOBER 17-20, 2021• COLUMBUS, OHIO On-Demand Content available:

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

3:40 PM Invited

Discontinuous Precipitation Leading to Nano-rod Intermetallic Precipitates in High Entropy Alloys Results in an Excellent Strength-ductility Combination: *Sriswaroop Dasari*²; Abhishek Sharma¹; Bharat Gwalani¹; Yao-Jen Chang²; Abhinav Jagetia¹; Vishal Soni¹; Stephane Gorsse³; An-Chou Yeh²; Rajarshi Banerjee¹; ¹University Of North Texas; ²National Tsing Hua University; ³University of Bordeaux

4:00 PM

Deformation Mechanisms in the Medium Entropy Alloy CoCrNi: Effects of Lattice Distortion and Chemical Short-range Order: Wurong Jian¹; Shuozhi Xu¹; Yanqing Su²; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²Utah State University

SPECIAL TOPICS

Input to the National Strategic Plan for Advanced Manufacturing — Discussion

Program Organizers: Said Jahanmir, Subcommittee on Advanced Manufacturing

National Science and Technology Council; James Warren, National Institute of Standards and Technology

Tuesday PM | October 19, 2021 B130 | Greater Columbus Convention Center

3:00 PM Round Table Discussion: Under the America COMPETES Act the federal government develops a national strategic plan for advanced manufacturing with stakeholder input from industry, academia non-profit organizations. The first of these quadrennial strategic plans was issued in 2018. Federal officials are seeking your input in the development of the 2022-2026 National Strategic Plan for Advanced Manufacturing. This Roundtable event is to solicit information from the Conference participants on where advanced manufacturing should go in the future and will follow questions to be issued in a public Request for Information from the White House Office of Science and Technology Policy.

FUNDAMENTALS AND CHARACTERIZATION

Integration between Modeling and Experiments for Crystalline Metals: From Atomistic to Macroscopic Scales III — Session III

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Levente Balogh, Queen's University; Caizhi Zhou, University of South Carolina; Lei Cao, University of Nevada; Josh Kacher, Georgia Institute of Technology

Tuesday PM | October 19, 2021 B246 | Greater Columbus Convention Center

Session Chairs: Bjorn Clausen, Los Alamos National Laboratory; Ben Morrow, Los Alamos National Laboratory

2:00 PM Invited

In-situ Scattering Experiments Facilitating Development and Validation of Constitutive and Process Models: *Bjørn Clausen*¹; Donald Brown¹; D. Travis Carver¹; ¹Los Alamos National Laboratory

2:40 PM

Effect of Twin-twin Junctions on Slip-twin Interactions and Twin-twin Intersections: Jiaxiang Wang¹; M.Arul Kumar²; Krishna Yaddanapudi³; Subhash Mahajan³; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²Los Alamos National Laboratory; ³University of California, Davis

3:00 PM

The Interactions between Basal-precipitates and Propagating Twin Tips in AZ91: Brandon Leu¹; Mariyappan Kumar²; Irene Beyerlein²; ¹University of California-Santa Barbara; ²Los Alamos National Lab

3:20 PM

Fluctuations in the Generalized Planar Fault Energy Landscape in Concentrated FCC Solid Solutions: Matthew Daly¹; Ritesh Jagatramka¹; Chu Wang¹; ¹University of Illinois-Chicago

3:40 PM

First-principles Study of the Effect of Al and Hf Impurities on Co₃W Antiphase Boundary Energies: Chiraag Nataraj¹; Ruoshi Sun²; Christopher Woodward³; Axel van de Walle¹; ¹Brown University; ²University of Virginia; ³Air Force Research Lab

4:00 PM

Thermodynamic Modeling of the Ga-Ni System Using the Third Generation Gibbs Free Energy Function for Pure Elements: *Liangyan Hao*¹; Chen Shen²; Hongbin Zhang²; Wei Xiong¹; ¹University of Pittsburgh; ²Technische Universität of Darmstadt

4:20 PM Invited

Co-development of Experiment and Simulation to Observe Dynamic Behavior in Metals in Complex Loading Environments: *Benjamin Morrow*¹; Virginia Euser¹; Clarissa Yablinsky¹; Nicholas Denissen¹; ¹Los Alamos National Laboratory

CERAMIC AND GLASS MATERIALS

Manufacturing and Processing of Advanced Ceramic Materials — Processing of Oxide Ceramics

Sponsored by: ACerS Manufacturing Division

Program Organizers: Bai Cui, University of Nebraska-Lincoln; James Hemrick, Oak Ridge National Laboratory; Mike Alexander, Allied Mineral Products; Eric Faierson, Quad City Manufacturing Laboratory/Western Illinois University; Keith DeCarlo, Blasch Precision Ceramics

Tuesday PM | October 19, 2021 B234 | Greater Columbus Convention Center

Session Chair: Yiquan Wu, Alfred University

2:00 PM Invited

Effects of Sintering Additive and Oxygen Partial Pressure on Solidstate Single-crystal Growth of YAG Ceramics: Iva Milisavljevic¹; Guangran Zhang¹; Yiquan Wu¹; ¹Alfred University

2:40 PM

Unique Technological Advantages and Progress towards Manufacturing Scale-up: Sun Hwi Bang¹; Clive Randall¹; ¹Pennsylvania State University

BIOMATERIALS

Next Generation Biomaterials — Session II

Sponsored by: ACerS Bioceramics Division, TMS Biomaterials Committee

Program Organizers: Roger Narayan, University of North Carolina; Min Wang, University of Hong Kong; Shawn Allan, Lithoz America LLC

Tuesday PM | October 19, 2021 A224 | Greater Columbus Convention Center

Session Chairs: Anna Bull, University of Tennessee Space Institute; Begoña Ferrari, Instituto de Cerámica y Vidrio del CSIC

2:00 PM Invited

A Breath Test for COVID-19: Pelagia Gouma¹, ¹The Ohio State University

2:20 PM Invited

Reducing Intraoperative Fogging of Laparoscopes with Diamondlike Carbon Thin Films: Anna Bull¹; Christopher Haycook²; Chad Bond³; Russell Leonard³; Todd Giorgio²; Jacqueline Johnson³; ¹University of Tennessee Space Institute; ²Vanderbilt University; ³UT Space Institute

2:40 PM

Investigation of Biodegradable Mg-Li Quaternary Alloys with Improved Uniform Degradation: Chiamaka Okafor¹; Norman Munroe¹; ¹Florida International University

3:00 PM

Mechanical Behavior of Bonded-PDMS for Biological Payloads in Microgravity: Annaliza Perez-Torres¹; ¹Space Tango

3:20 PM

Comparative Evaluation of Nutrient Composition in Cow Hornwaste and Some Commercially Available Fish Feed as Supplement in Aquaculture: *Ita Uwidia*¹; Osalodion Uwidia¹; ¹University of Benin

CERAMIC AND GLASS MATERIALS

Phase Transformations in Ceramics: Science and Applications — Computation and Predictions

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Scott Mccormack, University of California, Davis; Pankaj Sarin, Oklahoma State University; Sanjay V. Khare, University of Toledo; Waltraud Kriven, University of Illinois at Urbana-Champaign

Tuesday PM | October 19, 2021 B230 | Greater Columbus Convention Center

Session Chair: To Be Announced

2:00 PM

Effects of S Doping on the Mechanical and Opto-electronic Properties of Cu2CdGeSe4: Victor Barone¹; Bishal Dumre¹; Randall Ellingson¹; Sanjay Khare¹; ¹The University of Toledo

2:20 PM

Nanostructured Spinel Ferrite Ceramics: Structure and Magnetic Properties: *Suraj Mullurkara*¹; Y. Wang¹; A. Talaat¹; W. Xiong¹; J.K. Lee¹; P.R. Ohodnicki¹; ¹University of Pittsburgh

BIOMATERIALS

Porous Materials for Biomedical Applications — Session I

Sponsored by: ACerS Bioceramics Division

Program Organizers: Usman Liaqat, National University of Sciences and Technology; Chuanbin Mao, University of Oklahoma; Mingying Yang, Zhejiang University

Tuesday PM | October 19, 2021 A222 | Greater Columbus Convention Center

Session Chair: To Be Announced

2:00 PM

Multifunctional Artificial Artery from Direct 3D Printing with Built-in Ferroelectricity and Tissue-matching Modulus for Real-time Sensing and Occlusion Monitoring: Jun Li¹; ¹University of Wisconsin-Madison

2:20 PM

Synthesis and Characterization of Porous Diopside Scaffold Synthesized Using Rice Husk as a Space Holder Material for Orthopedic Application: Mayank Yadav¹; Vaibhav Pandey¹; Jyoti Kumari¹; Kalyani Mohanta¹; Vinay Singh¹; ¹Indian Institute of Technology (BHU), Varanasi

PROCESSING AND MANUFACTURING

Powder Metallurgical Components in High Performance Applications — Session I

Sponsored by: TMS Powder Materials Committee

Program Organizers: Peng Cao, The University of Auckland; Hanadi Salem, American University in Cairo; Paul Prichard, Kennametal Inc.; Matthew Osborne, Global Advanced Metals; James Paramore, US Army Research Laboratory

Tuesday PM | October 19, 2021 A213 | Greater Columbus Convention Center

Session Chair: James Paramore, United States Army Research Laboratory

2:00 PM

Development of Resistance Based Sintering for Metal Powders: *Jerry Gould*¹; James Cruz¹; ¹Edison Welding Inst

2:20 PM

Dispersing Tailored Nanoparticles through Powder Metallurgy Consolidation: Bahrum Rocky¹; Rofiques Salehin²; Christopher Weinberger²; Steve Daniewicz¹; Gregory Thompson¹; ¹University of Alabama; ²Colorado State University

FUNDAMENTALS AND CHARACTERIZATION

Probing Defect Properties and Behavior under Mechanical Deformation and Extreme Conditions — Defect-mediated Mechanical Performance and Damage Tolerance

Sponsored by: TMS Nanomechanical Materials Behavior Committee, TMS Nuclear Materials Committee, TMS Mechanical Bahavior of Materials Committee

Program Organizers: Zhe Fan, Lamar University; Tianyi Chen, Oregon State University; Shijun Zhao, City University of Hong Kong; Mitra Taheri, Johns Hopkins University; Yury Osetskiy, Oak Ridge National Laboratory

Tuesday PM | October 19, 2021 B140/141 | Greater Columbus Convention Center

Session Chairs: Jian Wang, University of Nebraska-Lincoln; Tianyi Chen, Oregon State University

2:00 PM Invited

Designing Metal and Amorphous Ceramic Composites for Extreme Conditions: *Jian Wang*¹; Binqiang Wei¹; ¹University of Nebraska-Lincoln

2:30 PM

Estimating the Strengthening Parameters for Irradiated Alloys Using Atomic Scale Dislocation Dynamics: Osetskiy Yury¹; ¹Oak Ridge National Laboratory

2:50 PM

Investigating Deformation Mechanisms in Ni-based Superalloys with Compact '- "Coprecipitates: Semanti Mukhopadhyay¹; Hariharan Sriram¹; Richard DiDomizio²; Andrew Detor²; Robert Hayes³; Gopal B. Viswanathan¹; Yunzhi Wang¹; Michael Mills¹; ¹The Ohio State University; ²GE Global Research Center; ³Metals Technology Inc.

3:10 PM

Nanomechanical Properties of Neutron Irradiated Austenitic Steels: *Tianyi Chen*¹; Mack Cullison¹; ¹Oregon State University

3:30 PM Break

3:50 PM

Local Phase Transformation Strengthening in Ni-based Superalloys: Ashton Egan¹; Fei Xue²; Timothy Smith³; Longsheng Feng¹; Shakthipriya Baskar¹; Emmanuelle Marquis²; Yunzhi Wang¹; Maryam Ghazisaeidi¹; Michael Mills¹; ¹Ohio State University; ²University of Michigan; ³NASA Glenn Research Center

4:10 PM

Phase-field Modeling of Electromigration-mediated Void Migration and Coalescence under Mechanical and Current-stressing in Interconnect Lines: William Farmer¹; Sree Vemulapalli¹; Kumar Ankit¹; ¹Arizona State University

4:30 PM

Mechanical and Microstructural Responses of Severe-plastic Deformed High Entropy Alloys under Irradiation: Spencer Doran¹; Tracey Spoerer¹; Megumi Kawasaki¹; Youxing Chen²; Di Chen³; Tianyi Chen¹; ¹Oregon State University; ²University of North Carolina Charlotte; ³University of Huston

SPECIAL TOPICS

ACerS Robert B. Sosman Award Symposium: Bridging the Gap between Atomistic and Continuum Approaches to Interface Science — Sosman I

Sponsored by: ACerS Basic Science Division

Program Organizer: John Blendell, Purdue University

Wednesday AM | October 20, 2021 B130 | Greater Columbus Convention Center

Session Chair: John Blendell, Purdue University

8:00 AM Introductory Comments

8:10 AM Invited

Stressing Surfaces and Interfaces to Change Microstructure: Klaus van Benthem¹; ¹University of California, Davis

8:40 AM Invited

Atomic Structure of Two Phases of a Cu Tilt Grain Boundary Resolved by Scanning Transmission Electron Microscopy: Gerhard Dehm¹; Thorsten Meiners¹; Jazmin Duarte¹; Timofey Frolov²; Christian Liebscher¹; ¹MPI Eisenforschung; ²Lawrence Livermore National Laboratory

9:10 AM Invited

Formation/Migration of Faceted Boundaries and Grain Growth Behavior in Ni: Suk-Joong Kang¹; ¹KAIST

9:40 AM Invited

Charged Interfaces: Equilibrium, Phase Transitions, and Microstructural Evolution: KSN Vikrant 1 ; Edwin Garcia 1 ; 1 Purdue University

10:10 AM Break

10:30 AM Invited

Microstructure Evolution in Thin Film Yttria-doped Barium Zirconate: Dylan Jennings¹; *Ivar Reimanis*¹; Sandrine Ricote¹; Jose Santiso²; ¹Colorado School of Mines; ²Catalan Institute of Nanoscience and Nanotechnology, ICN2

11:00 AM Invited

FCC Films on c-sapphire: Why Do Single Elements and High Entropy Alloys Adopt the Same Orientation Relationships?: Dominique Chatain¹; ¹CNRS

11:30 AM Invited

Combining Atomistic to Thermodynamic Modeling with Machine Learning and Advanced Microscopy to Understand General Grain Boundaries and Interfaces: *Jian Luo*¹; ¹University of California, San Diego

ADDITIVE MANUFACTURING

Additive Manufacturing of High and Ultra-High Temperature Ceramics and Composites: Processing, Characterization and Testing — Polymer-derived Ceramics (PDCs) and Novel Processing Methods

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Corson Cramer, Oak Ridge National Laboratory; Greg Hilmas, Missouri University of Science and Technology; Lisa Rueschhoff, Air Force Research Laboratory

Wednesday AM | October 20, 2021 A111 | Greater Columbus Convention Center

Session Chair: William Costakis, Air Force Research Labs

10:00 AM

Advanced Polymer-derived (Ultra)-high-temperature Resistant Ceramics and Ceramic Nanocomposites for Additive Manufacturing: Ralf Riedel¹; ¹TU Darmstadt

10:30 AM

Innovative Route for the 3D Printing of Hybrid Silicon Carbide/Carbon Fiber Nanocomposites: Saja Al-ajrash; 1

10:50 AM

High Temperature Properties of Polymer-derived Ceramic Matrix Composites Fabricated via Additive Manufacturing: *Tobias Schaedler*¹; Kayleigh Porter¹; Phuong Bui¹; Ekaterina Stonkevitch¹; Mark O'Masta¹; ¹HRL Laboratories LLC

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Equipment, Instrumentation and In-Situ Process Monitoring — Imaging and Sensing Methods

Program Organizers: Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Joy Gockel, Colorado School of Mines; Sneha Prabha Narra, Carnegie Mellon University

Wednesday AM | October 20, 2021 A121 | Greater Columbus Convention Center

Session Chair: Ulf Ackelid, Freemelt AB

8:00 AM

High-speed Observations and Quantification of Spatter in Laser Powder Bed Fusion: Christian Gobert¹; Jack Beuth¹; Evan Diewald¹; ¹Carnegie Mellon University

8:20 AM

Advancing Measurement Science of Laser Powder Bed Fusion (LPBF) Process Monitoring Applying Thermal Imaging: Guadalupe Quirarte¹; Syed Zia Uddin¹; ¹Carnegie Mellon University

8:40 AM Invited

Innovative and Practical Approaches to Laser Powder Bed Fusion Sensing and Process Enhancement: John Middendorf¹, ¹Open Additive

9:20 AM

In-situ Sensing in Processing Parameter Development for Bismuth Telluride Bulk Part Fabrication Using Laser Powder Bed Fusion: *Kelly Rickert*¹; Joy Gockel¹; Sabrina D'Alesandro¹; Saniya LeBlanc²; Tanvi Banerjee¹; Alexander Groeger¹; Joe Walker³; John Middendorf³; ¹Wright State University; ²George Washington University; ³Open Additive

9:40 AN

Laser Powder Bed Fusion of Tall Thin Walled Structures: Dimensional Inaccuracy Due to Local Buckling, and In Situ Infrared Imaging for Early Failure Detection: Syed Zia Uddin¹; Jack Beuth¹; ¹Carnegie Mellon University

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Microstructure, Properties and Alloy Development — Other Miscellaneous Materials/Alloys

Program Organizers: Prashanth Konda Gokuldoss, Tallinn University of Technology; Juergen Eckert, Erich Schmid Institute of Materials Science; Zhi Wang, South China University of Technology

Wednesday AM | October 20, 2021 A115 | Greater Columbus Convention Center

Session Chair: Roman Maev, University of Windsor

8:00 AM

3D Printing of the Half-Heusler Alloy Nb1-xCoSb, A Case for Ternary Thermoelectric Materials: $Muath\ Almalki^1$; David Dunand¹; G. Jeffrey Snyder¹; ¹Northwestern University

8:20 AM

Defect Free Pure Molybdenum Processed through Electron Beam Melting: Patxi Fernandez-Zelai²; Chris Ledford¹; Elizabeth Ellis²; Quinn Campbell¹; Andres Marquez Rossy¹; Michael Kirka¹; Donovan Leonard¹; ¹Oak Ridge National Laboratory; ²Y-12 National Security Complex

8:40 AM

Fabrication of Pure Tungsten Using Electron Beam Powder Bed Fusion: Christopher Ledford¹; Michael Kirka¹; Patxi Fernandez-Zelaia¹; Julio Ortega Rojas¹; Andres Marquez Rossy¹; Yutai Kato¹; ¹Oak Ridge National Laboratory

9:00 AM

Design of Wire-arc Additive Manufacturing of Functionally Graded Alloy from P91 Steel to Inconel 740H Superalloy Using Highthroughput Method: Xin Wang¹; Soumya Sridar¹; Michael Klecka²; Wei Xiong¹; ¹University of Pittsburgh; ²Raytheon Technologies Research Center

9:20 AM

Effect of Heat Treatment on Stainless Steel 420 And Inconel 718 Multi-material Structures Fabricated Laser Directed Energy Deposition: Beytullah Aydogan¹; Himanshu Sahasrabudhe¹; ¹Michigan State University

9:40 AM

Process-property Relationships of Additively Manufactured Multimaterial NiZnCu-ferrite Soft Magnetic Composites: Caleb Andrews¹; Li Ma²; Ryan Carter²; Ian McCue²; Joseph Sopcisak²; Mitra Taheri¹; ¹Johns Hopkins University; ²The Johns Hopkins University Applied Physics Laboratory

ADDITIVE MANUFACTURING

Additive Manufacturing: Large-Scale Metal Additive Manufacturing — Advanced Manufacturing Process

Program Organizers: Yousub Lee, Oak Ridge National Laboratory; Antonio Ramirez, Ohio State University; Yashwanth Bandari, 'Meltio Inc.; Duckbong Kim, Tennessee Technological University; Wei Zhang, Ohio State University

Wednesday AM | October 20, 2021 A114 | Greater Columbus Convention Center

Session Chair: Duckbong Kim, Tennessee Technological University

8:00 AM

Manufacturing Large Scale Metal Parts via AM – Current and Future Directions: Andrzej Nycz¹; ¹Oak Ridge National Laboratory

8:40 AM

An Investigation of the Properties of Stamping Tool Inserts Manufactured Using a Novel Wire Deposition Additive Manufacturing Process: Joy Forsmark¹; Alan Gillard¹; Sal Barriga²; Adam LaDelpha²; Henry Merrow²; Brian McCabe²; Ford Motor Company; Digital Alloys

9:00 AM

Development of 3D Metal Printing for Toolmaking: Felix Gemse¹; Danny Lubosch²; Olaf Penning³; Edgar Fries⁴; Enrico Danz⁵; ¹Günter-Köhler-Institute GmbH; ²Gefertec GmbH; ³Hermann Fliess & Co. GmbH; ⁴Fraunhofer Institute for Production Systems and Design Technology IPK; ⁵SWM Werkzeugfabrik GmbH & Co.KG

9:20 AM

Hybrid Metal Manufacturing of Large Freeform Geometries: Bradley Jared¹; William Hamel¹; Tony Schmitz¹; Joshua Penney¹; Leah Jacobs¹; Aaron Cornelius¹; Jake Dvorak¹; Michael Buckley¹; Greg Corson¹; Eduardo Miramontes¹; ¹University of Tennessee, Knoxville

9:40 AM

Novel Thermal Management Technique for Additive Manufacturing: Robert Griffiths¹; David Garcia²; Hang Yu¹; ¹Virginia Polytechnic Institute; ²Pacific Northwest National Laboratory

10:00 AM

High Deposition Rate Wire Arc Directed Energy Deposition of 316L for Pressure Retaining Components in Nuclear Applications: Luc Hagen¹; Stephen Tate²; Zhenzhen Yu¹; Jonah Klemm-Toole¹; ¹Colorado School of Mines; ²EPRI

ADDITIVE MANUFACTURING

Additive Manufacturing: Mechanisms and Mitigation of Aqueous Corrosion and High-temperature Oxidation — Corrosion Assessment of Additively Manufactured Parts I

Program Organizers: Amir Mostafaei, Illinois Institute of Technology; Yashar Behnamian, University of Alberta; Bryan Webler, Carnegie Mellon University

Wednesday AM | October 20, 2021 A112 | Greater Columbus Convention Center

Session Chairs: Amir Mostafaei, Illinois Institute of Technology; Bryan Webler, Carnegie Mellon University

8:00 AM

SCC Behavior of IN 718 in BWR Conditions: Amanda Leong¹; Jinsuo Zhang¹; George Pabis²; ¹Virginia Tech; ²Nova Tech

8:30 AM

Environmentally Assisted Cracking of AM718 Wire Arc Additively Deposited AM 718 - Role of Processing and Microstructure: Ramgopal Thodla¹; Badri Naraynan²; Hannah Sims²; Ben Schaeffer²; ¹DNV; ²Lincoln Electric

9:00 AM

Performance Evaluation of Oxidized Inconel 625 Made by Laser-assisted Additive Manufacturing: *Grace De Leon Nope*¹; Juan Alvarado-Orozco²; Guofeng Wang¹; Brian Gleeson¹; ¹University of Pittsburgh; ²CIDESI

9:30 AM

Assessing the Printability and Oxidation Resistance of AM Built Al_xCoCrFeNi with Directed Energy Deposition: Jose Loli¹; Bryan Webler¹; Maarten De Boer¹; Jack Beuth¹; ¹Carnegie Mellon University

ADDITIVE MANUFACTURING

Additive Manufacturing: Processing, Microstructure and Material Properties of Titanium-based Materials — Session IV

Sponsored by: TMS Titanium Committee

Program Organizers: Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Peeyush Nandwana, Oak Ridge National Laboratory; Rongpei Shi, Lawrence Livermore National Laboratory

Wednesday AM | October 20, 2021 A120 | Greater Columbus Convention Center

Session Chair: To Be Announced

8:00 AM

Melt Pool Characterization and Numerical Simulation in Selective Laser Melting of NiTi Powder: Stanislav Chernyshikhin¹; Igor Shishkovsky¹; ¹Skolkovo Institute of Science and Technology

8:20 AM

Additive Manufacturing of Titanium – Boron Carbide In Situ Composites: Mohan Sai Kiran Nartu¹; Srinivas Aditya Mantri¹; Thomas Scharf¹; Brandon Mc Williams²; Kyu Cho²; Narendra Dahotre¹; Rajarshi Banerjee¹; ¹University of North Texas; ²CCDC U.S. Army Research Laboratory

8:40 AM

Comparison of Mechanical Properties for Ti-Ta Vertically and Horizontally Graded Interfaces in Laser Powder Bed Fusion: *Cherish Lesko*¹; Joseph Walker²; John Middendorf²; Joy Gockel¹; ¹Wright State University; ²Arctos Technology Solutions

9:00 AM

Multi-scale Strain, Microstructure, and Solidification Behavior of Ti-5553 Architected Lattice Melt Pools: Caleb Andrews¹; Maria Strantza²; Tae Wook Heo²; Nicholas Calta²; Rongpei Shi²; Manyalibo Matthews²; Mitra Taheri¹; ¹Johns Hopkins University; ²Lawrence Livermore National Laboratory

9:20 AM

Effects of Process Parameters on Fracture and Fatigue of High Deposition Rate Laser Hot Wire Processed CP-Ti Grade 2: Hannah Sims¹; John Lewandowski¹; ¹Case Western Reserve University

9:40 AM

Mechanical Properties as a Function of Material State for Additively Manufactured Ti-5Al-5V-5Mo-3Cr: Andrew Temple¹; Madison Harrington¹; Peter Collins¹; ¹Iowa State University

10:00 AM

Performance of Titanium Alloy Lattice Structures in Quasi-static and High Strain Rate Environments: John Carpenter¹; Ben Brown²; *Nathan Johnson*³; Don Brown¹; David Jones¹; Borys Drach⁴; Jonathan Pegues⁵; Manyalibo Matthews⁶; ¹Los Alamos National Laboratory; ²Kansas City National Security Campus; ³SLAC National Accelerator Laboratory; ⁴New Mexico State University; ⁵Sandia National Laboratories; ⁶Lawrence Livermore National Laboratory

ENERGY

Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments — Data Intensive and Correlative Methods

Sponsored by: TMS Nuclear Materials Committee

Program Organizers: Cody Dennett, Idaho National Laboratory; Samuel Briggs, Oregon State University; Christopher Barr, Naval Nuclear Laboratory; Michael Short, Massachusetts Institute of Technology; Janelle Wharry, Purdue University; Cheng Sun, Idaho National Laboratory; Caitlin Taylor, Los Alamos National Laboratory; Emily Aradi, University of Manchester; Khalid Hattar, Sandia National Laboratories

Wednesday AM | October 20, 2021 A215 | Greater Columbus Convention Center

Session Chairs: Janelle Wharry, Purdue University; Kevin Field, University of Michigan

8:00 AM Invited

Correlated Scattering and Microscopy Techniques for In-situ and Ex-situ Rapid Clustering Determination in Activated Materials: Kevin Field¹; Samuel Briggs²; Caleb Massey³; Dalong Zhang⁴; Kenneth Littrell³; ¹University of Michigan; ²Oregon State University; ³Oak Ridge National Laboratory; ⁴Pacific Northwest National Laboratory

8:20 AM Invited

Imaging Nanostructural Heterogeneities and Vacancy Supersaturation in Ni-2OCr after Corrosion in Molten Salt: Yang Yang¹; Weiyue Zhou²; Shen Yin³; Sarah Wang⁴; Qin Yu³; Matthew J. Olszta⁵; Daniel K. Schreiber⁵; Jim Ciston³; Robert O. Ritchie³; Mark Asta³; Ju Li²; Michael P. Short²; Andrew M. Minor³; ¹Pennsylvania State University; ²MIT; ³Lawrence Berkeley National Laboratory; ⁴UCB; ⁵PNNL

8:40 AM

Multi-scale Characterization of Silicon Carbide Oxidation: *Adam Bratten*¹; Haiming Wen¹; Visharad Jalan¹; ¹Missiouri University of Science and Technology

9:00 AM

Europa Lander Contamination Control: Materials Testing and Numerical Simulation in a Flight Like Environment: *Anthony Wong*¹: ¹Jet Propulsion Lab, California Institute of Technology

9:20 AM

A Closer Observation to the Precipitation Behavior of Proton Irradiated Dual Phase 308L Weldment Filler Materials: Zhen Li¹; Xun Zhan¹; Weicheng Zhong¹; Benjamin Sutton²; Brent Heuser¹; ¹University of Illinois at Urbana-Champaign; ²Electric Power Research Institute

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Materials for Harsh Environments — Session III

Sponsored by: ACerS Electronics Division

Program Organizers: Navin Manjooran, Solve Technology and Research, Inc.; Gary Pickrell, Virginia Tech

Wednesday AM | October 20, 2021 A223 | Greater Columbus Convention Center

Session Chairs: Gary Pickrell, Professor, Virginia Tech; Navin Manjooran, Chairman, Solve

8:00 AM

Towards a Fundamental Understanding of Surface Interactions and Degradation Mechanism in Bio-feedstock-induced Corrosion: Soheil Daryadel¹; Deborah Liu¹; Hyosung An¹; Samyukta Shrivastav¹; Siddhesh Shevade²; Tom Eason²; Qian Chen¹; Daniel Krogstad¹; Jessica Krogstad¹; ¹University of Illinois at Urbana-Champaign; ²BP

8:20 AM

High-temperature Stability and Phase Transformations of Titanium Carbide (Ti3C2Tx) MXene: Srinivasa Kartik Nemani¹; Brian Wyatt¹; Bowen Zhang¹; Babak Anasori¹; ¹Integrated Nanosystems Development Institute (INDI), IUPUI

8:40 AM

Oxidation Behavior of IN100 Superalloy between 840 - 1120 K: Sebastian Lech¹; *Agnieszka Wusatowska-Sarnek*²; Adam Kruk¹; ¹AGH University of Science and Technology; ²Pratt & Whitney

PROCESSING AND MANUFACTURING

Advances in Surface Engineering — Advances in Surface Engineering

Sponsored by: TMS Surface Engineering Committee

Program Organizers: Rajeswaran Radhakrishnan, Faraday Technology Inc; Brian Skinn, Faraday Technology, Inc.; Timothy Hall, Faraday Technology Inc; Michael Roach, University of Mississippi Medical Center; Sandip Harimkar, Oklahoma State University; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University

Wednesday AM | October 20, 2021 A214 | Greater Columbus Convention Center

Session Chairs: Rajeswaran Radhakrishnan, Faraday Technology, Inc.; Andrew Moran, Faraday Technology, Inc.

8:00 AM

Engineering of Wearproof Surface by Management of Mechanical-Chemical Phenomena in Zone Contact: Volodymyr Tsyganov¹; Richard Mokhnach¹; ¹"Zaporizhzhia Polytechnic" National University

8:20 AM

Methodological Principles of Engineering Surface Stainless Steel at Treatment Cutting with a Polymer: Volodymyr Tsyganov¹; Sergey Sheyko²; ¹"Zaporizhzhia Polytechnic" National University; ²Zaporizhzhia National University

8:40 AM

Non-linear Through-hole Fabrication

by Electrochemical Machining: Andrew Moran¹; Brian Skinn¹; Tim Hall¹; Stephen Snyder¹; Michael Horonzy²; Victor Alderman¹; ¹Faraday Technology Inc.; ²Republic Anode Fabricators

CERAMIC AND GLASS MATERIALS

Ceramics and Glasses Modeling by Simulations and Machine Learning — Session I

Sponsored by: ACerS Glass & Optical Materials Division

Program Organizers: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas at Arlington; N. M. Anoop Krishnan, Indian Institute of Technology Delhi

Wednesday AM | October 20, 2021 B231 | Greater Columbus Convention Center

Session Chairs: Mathieu Bauchy, UCLA; Peter Kroll, UT Arlington; Anoop Krishnan, IIT Delhi

10:00 AM

Information Extraction Pipeline for Glasses: An NLP Based Approach: Vineeth Venugopal¹; Sourav Sahoo¹; Mohd Zaki¹; Nitya Nand Gosvami¹; N. M. Anoop Krishnan¹; ¹IIT DELHI

10:20 AM

A Machine-learning Based Hierarchical Framework to Discover Novel Scintillator Chemistries: Anjana Talapatra¹; Blas Uberuaga¹; Christopher Stanek¹; Ghanshyam Pilania¹; ¹Los Alamos National Laboratory

11:00 AM

The Energy Landscape Governs Ductility in Disordered Materials: *Mathieu Bauchy*¹; ¹University of California, Los Angeles

10:40 AM

Kinetic Monte Carlo Simulation of Glasses Aided by Machine Learning: Ajay Annamareddy¹; ¹University of Wisconsin - Madison

MATERIALS-ENVIRONMENT INTERACTIONS

Computation Assisted Materials Development for Improved Corrosion Resistance — A: Low Temperature Corrosion

Program Organizers: Rishi Pillai, Oak Ridge National Laboratory; Laurence Marks, Northwestern University

Wednesday AM | October 20, 2021 A222 | Greater Columbus Convention Center

Session Chair: David Shifler, Office of Naval Research

8:00 AM Introductory Comments

8:05 AM Invited

Factors That Influence Materials Corrosion and How Modeling May Predict These Effects: David Shifler¹: ¹Office of Naval Research

8:35 AM

Back to the Basics: Revisiting Copper to Build Thermodynamic Corrosion Models: Lauren Walters¹; Liang-Feng Huang²; James Rondinelli¹; ¹Northwestern University; ²Ningbo Institute of Materials Technology and Engineering

8:55 AM

Computational Modeling of Corrosion and Mechanical Failure in Magnesium-Aluminum Vehicle Joints: Kubra Karayagiz¹; Adam Powell¹; Qingli Ding¹; Brajendra Mishra¹; ¹Worcester Polytechnic Institute

9:15 AM

Development of a Damage Function for Galvanic Corrosion Degradation of Coated Al Alloy Systems: Mahdi Jokar¹; Gerald Frankel¹; ¹Ohio State University

NANOMATERIALS

Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — Nanoparticles & Nanocomposites I

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Polytechnic Institute and State University; Edward Gorzkowski, Naval Research Laboratory; Jian Shi, Rensselear Polytechnich University; Michael Naguib, Tulane University; Sanjay Mathur, University of Cologne

Wednesday AM | October 20, 2021 B240/241 | Greater Columbus Convention Center

Session Chairs: Edward Gorzkowski , Naval Research Laboratory; Kathy Lu, Virginia Tech

8:00 AM Invited

Controlling Grain Growth with Anisotropic Interfacial Energy and Heterogeneous Segregation: Amanda Krause¹; ¹University of Florida

8:30 AM

Low Temperature Synthesis of Metastable Tetragonal Yttria Doped Hafnia T-(Y-HfO2) Nanoparticles Through Mechanochemical Processing and Annealing: Zanlin Qiu¹; Cheng-han Li¹; Joerg Jinschek¹; Pelagia-Irene (Perena) Gouma¹; Ohio State University

8:50 AM Invited

Design of Nanoparticles from Environmentally Benign Precursors: *Surojit Gupta*¹; ¹University of North Dakota

9:20 AM

Surface Oxidation Behavior of FeNi-based Metal Amorphous Nanocomposite (MANC) for High Speed Motor Applications: James Egbu¹; Paul Ohodnicki²; Ruishu Wright³; John Baltrus³; Michael McHenry¹; ¹Carnegie Mellon University; ²University of Pittsburgh; ³National Energy Technology Laboratory

9:40 AM

Mechanisms of Hillock Formation and Nanostructural Self-assembly during Vapor-deposition of Phase-separating Alloy Films: Rahul Raghavan¹; *Kumar Ankit*¹; ¹Arizona State University

ENERGY

Energy Materials for Sustainable Development — Fuel Cells / Storage Batteries II

Sponsored by: ACerS Energy Materials and Systems Division

Program Organizers: Armin Feldhoff, Leibniz University Hannover; Kyle Brinkman, Clemson University; Krista Carlson, University of Utah; Eva Hemmer, University of Ottawa; Nikola Kanas, Institute Biosense, University of Novi Sad; Kjell Wiik, Norwegian University of Science and Technology; Lei Zuo, Virginia Tech; Stephanie Lee, Stevens Institute of Technology; Muhammad Hajj, Stevens Institute of Technology

Wednesday AM | October 20, 2021 A216 | Greater Columbus Convention Center

Session Chairs: Julia Zaikina, Iowa State University; Mona Zebarjadi, University of Virginia

8:00 AM

Magnesium-air Fuel Cell and MgO Electrolyzer: Hongyi Sun¹; Armaghan Telgerafchi²; Madison Rutherford²; Gabriel Espinosa²; Lucien Wallace²; Adam Powell²; Mahya Shahabi²; ¹University of Maryland, College Park; ²Worcester Polytechnic Institute

8:20 AM

Improving Intermediate-temperature Solid Oxide Fuel Cell Anode Performance with Metal and MIEC Nanocatalyst Infiltration: *Jillian Rix*¹; Boshan Mo¹; Uday Pal¹; Srikanth Gopalan¹; Soumendra Basu¹; ¹Boston University

8:40 AM

Liquid Metal Anode Direct Carbon Fuel Cell: *Steven Jacek*¹; Christian Faria¹; Adam Powell¹; Boyd Davis²; Yu Zhong¹; Uday Pal³; Soumendra Basu³; ¹Worcester Polytechnic Institute; ²Kingston Process Metallurgy; ³Boston University

9:00 AM Invited

The Role of Lithium Site Occupancy on Lithium-Ion Conductivity of Tantalum-Doped Lithium Lanthanum Zirconium Oxide Garnet: Jeffrey Fergus¹; Xingxing Zhang¹; ¹Auburn University

9:30 AM

One-step Synthesis of Carbon-coated LiCoPO₄ Nanopowders for High Voltage Battery Cathodes: V. V. Rohit Bukka¹; Pankaj Sarin¹; ¹Oklahoma State University

IRON AND STEEL (FERROUS ALLOYS)

Fracture of Steels: New Approaches to Modeling and Experimental Characterization — Session I

Sponsored by: TMS Steels Committee

Program Organizers: Louis Hector, General Motors Global Technical Center; Ana Luiza Araujo, AK Steel Research & Innovation; Matthias Militzer, University of British Columbia; Amy Clarke, Colorado School of Mines

Wednesday AM | October 20, 2021 A211 | Greater Columbus Convention Center

Session Chair: Ana Araujo, CBMM

8:00 AM

Applied Potential Influence on Stress Corrosion Cracking Susceptibility of 316LN Stainless Steel Rebars in Simulated Concrete Pore Solution with Chlorides: Ulises Martin¹; Jacob Ress¹; Juan Bosch¹; David M. Bastidas¹; ¹University of Akron

8:20 AM Invited

Fracture Anisotropy of SS-304L Tubes under Biaxial Loading: Madhav Baral¹; Yannis Korkolis²; ¹University of New Hampshire; ²The Ohio State University

8:50 AM

Local Micromechanical Properties of Inclusions in Ferrous Alloys: Alejandra Slagter¹; Joris Everaerts¹; Léa Deillon¹; Andreas Mortensen¹; ¹EPFL

9:10 AM Keynote

The Mechanics of Size Effect in Brittle Fracture of Steel: Connecting the Change in Strain Energy and Its Planar Dissipation to Rationalize the Size-effect: K. S. Ravi Chandran¹; ¹University of Utah

9:50 AM

Peculiarities of Mechanics Destruction Tribojoints at a Difficult Dynamic Loading: Volodymyr Tsyganov¹; Sergey Sheyko²; ¹Zaporizhzhia Polytechnic National University; ²Zaporizhzhia National University

ELECTRONIC AND MAGNETIC MATERIALS

Functional Defects in Electroceramic Materials — Session I: Defect Engineering in Ceramic Materials

Sponsored by: ACerS Electronics Division

Program Organizers: Hui Xiong, Boise State University; Hua Zhou, Argonne National Laboratory

Wednesday AM | October 20, 2021 B235 | Greater Columbus Convention Center

Session Chairs: Claire Xiong, Boise State University; Hua Zhou, Argonne National Lab

10:00 AM Introductory Comments

10:05 AM Invited

Let Thermodynamics do Interfacial Engineering: *Jian Luo*¹; ¹University of California, San Diego

10:45 AM Invited

Accelerated Synthesis and In-situ X-ray Pair Distribution Functions of Substituted Vanadium Dioxide: Vicky Doan-Nguyen¹; ¹Ohio State University

11:15 AM Invited

Understanding Lithium Plating in Graphite and Silicon for Fast Charging Li-ion Battery: *Tao Gao*¹; ¹University of Utah

FUNDAMENTALS AND CHARACTERIZATION

High Entropy Materials: Concentrated Solid Solutions, Intermetallics, Ceramics, Functional Materials and Beyond II — Processing and Properties II

Sponsored by: TMS Alloy Phases Committee, TMS Mechanical Behavior of Materials Committee

Program Organizers: Michael Gao, National Energy Technology Laboratory; Xingbo Liu, West Virginia University; Peter Liaw, University of Tennessee; Jian Luo, University of California, San Diego; Yiquan Wu, Alfred University; Yu Zhong, Worcester Polytechnic Institute; Mitra Taheri, Johns Hopkins University; Amy Clarke, Colorado School of Mines

Wednesday AM | October 20, 2021 B131 | Greater Columbus Convention Center

Session Chairs: Fei Wang, University of Nebraska Lincoln; Chanho Lee, Los Alamos National Laboratory

8-00 AM

Irradiation Damage in (Zr_{0,25}Ta_{0,25}Nb_{0,25}Ti_{0,25})C High-entropy Carbide Ceramics: Fei Wang¹; Xueliang Yan¹; Tianyao Wang²; Yaqiao Wu³; Lin Shao²; Michael Nastasi²; Yongfeng Lu¹; Bai Cui¹; ¹University of Nebraska Lincoln; ²Texas A&M University; ³Boise State University

8:20 AM Invited

Radiation Effects in High Entropy Alloys: Shradha Agarwal¹; Steven Zinkle¹; ¹University of Tennessee

8:40 AM

Stress-corrosion of Al0.1CoCrFeNi High Entropy Alloy in a Molten Eutectic Salt: Xinyi Wang¹; Madison McGrann¹; James Earthman¹; ¹University of California-Irvine

9:00 AM

Amorphous Bands Induced by Low Temperature Tension in a Non-equiatomic CrMnFeCoNi Alloy: *Jian Wang*¹; Kaisheng Ming²; ¹University of Nebraska-Lincoln; ²Hebei University of Technology

9:20 AM Invited

Using Large Scale Ab Initio Computing to Predict and Understand High Entropy Alloys Formation: *Geoffroy Hautier*¹; G.B. Bokas²; W. Chen²; Stephane Gorsse³; A. Hilhorst²; P. Jacques²; ¹UCLouvain; Dartmouth College; ²UCLouvain; ³ICMB

9:50 AM

The Formation of Complex Ternary Oxides in Refractory Complex Concentrated Alloys: Logan Ware¹; Brahim Akdim²; Christopher Woodward³; Tinuade Daboiku²; Todd Butler³; Oleg Senkov²; Samuel Kuhr³; Noah Philips⁴; Michael Titus¹; ¹Purdue University; ²UES Inc.; ³Air Force Research Laboratory; ⁴ATI Specialty Alloys and Components

FUNDAMENTALS AND CHARACTERIZATION

High Entropy Materials: Concentrated Solid Solutions, Intermetallics, Ceramics, Functional Materials and Beyond II — Theory and Modeling I

Sponsored by: TMS Alloy Phases Committee, TMS Mechanical Behavior of Materials Committee

Program Organizers: Michael Gao, National Energy Technology Laboratory; Xingbo Liu, West Virginia University; Peter Liaw, University of Tennessee; Jian Luo, University of California, San Diego; Yiquan Wu, Alfred University; Yu Zhong, Worcester Polytechnic Institute; Mitra Taheri, Johns Hopkins University; Amy Clarke, Colorado School of Mines

Wednesday AM | October 20, 2021 B132 | Greater Columbus Convention Center

Session Chairs: Dilpuneet Aidhy, University of Wyoming; Yong-Jie Hu, Drexel University

8:00 AM Invited

Data-enabled Additive Manufacturing of High-entropy Alloys: Ganesh Balasubramanian¹; *Praveen Sreeramagiri*¹; ¹Lehigh University

8:30 AM Invited

Data-driven Design of Refractory High-entropy Alloys: George Kim¹; Chanho Lee²; Peter Liaw³; *Wei Chen*¹; ¹Illinois Institute of Technology; ²Los Alamos National Lab; ³University of Tennessee

8:50 AM

A Systematic Analysis of Phase Stability in Refractory High Entropy Alloys Utilizing Linear and Non-linear Cluster Expansion Models: Chiraag Nataraj¹; Edgar Josué Landinez Borda²; Axel van de Walle¹; Amit Samanta²; ¹Brown University; ²Lawrence Livermore National Lab

9:10 AM Invited

Atomic Transport by Point Defects and Clusters in Concentrated Alloys: Osetskiy Yury¹; Laurent Béland²; Alexander Barashev³; Yanwen Zhang⁴; ¹Oak Ridge National Laboratory; ²Queen's University; ³University of Michigan; ⁴University of Tennessee

9:30 AM Invited

Joint Prediction of Mechanical Properties of Alloys with Enhanced Fidelity through Integration of Machine Learning (Data Analytics) and Multiscale Modeling: Baldur Steingrimsson¹; Peter Liaw²; Jaafar El-Awady³; ¹Imagars LLC; ²University of Tennessee; ³John Hopkins University

9:50 AM Invited

Predicting Fundamental Properties of BCC Refractory Multicomponent Alloys Using Electronic Descriptors and Statistical Learning: Yong-Jie Hu¹; Christopher Tandoc¹; Liang Qi²; ¹Drexel University; ²University of Michigan

10:20 AM Break

10:40 AM Invited

Machine Learning Enabled Defect Energies in Concentrated Alloys: Gaurav Arora¹; Anus Manzoor¹; Dilpuneet Aidhy¹; ¹University of Wyoming

11:00 AM Invited

Determination of Fluctuations in Local Composition, Strain and Lattice Distortions in Multi-principal Component Alloys Using Advanced Transmission Electron Microscopy: Jian Min Zuo¹; Haw-Wen Hsiao¹; Yu-Tsun Shao¹; Qun Yang¹; Yang Hu¹; ¹University of Illinois

CERAMIC AND GLASS MATERIALS

Journal of the American Ceramic Society Awards Symposium — Journal of the American Ceramic Society Awards Symposium I

Sponsored by: ACerS

Program Organizer: William Fahrenholtz, Missouri University of Science and Technology

Wednesday AM | October 20, 2021 B233 | Greater Columbus Convention Center

Session Chairs: William Fahrenholtz, Missouri University of Science and Technology; Jonathon Foreman, American Ceramic Society

8:00 AM Introductory Comments

8:10 AM Invited

A Novel Strategy to Strengthen Alumina-carbon Refractories for Flow Control of Molten Steel: Zhe Chen¹; Wen Yan¹; Stefan Schafföner²; Yajie Dai¹; Qiang Wang¹; Guangqiang Li¹; ¹¹Wuhan University of Science and Technology; ²University of Bayreuth

8:40 AM Invited

A Thermodynamics-guided Framework to Design Spherical Lightweight Aggregate from Waste Coal Combustion Ash: Mohammad Balapour¹; Thiha Thway¹; Rathin Rao¹; Newell Moser²; Edward Garboczi²; Yick Hsuan¹; Sabrina Spatari¹; Yaghoob Farnam¹; ¹Drexel University; ²National Institute of Standards and Technology

9:10 AM Invited

Direct Ink Writing (DIW) of Hierarchical Porous Alumina Stabilized Emulsions: Rheology and Printability: *George Franks*¹; Shareen Chan¹; Mitchell Sesso²; ¹University of Melbourne; ²La Trobe University

9:40 AM Invited

Effect of Moisture on the Oxidation Behaviour of ZrB2.: Ravisankar Naraparaju¹; ¹German Aerospace Center

10:10 AM Break

10:30 AM Invited

Processing of MAX Phases: From Synthesis to Applications: *Jesus Gonzalez-Julian*¹; ¹Forschungszentrum Jülich

CERAMIC AND GLASS MATERIALS

Manufacturing and Processing of Advanced Ceramic Materials — Processing of Carbides, Borides, and Nitrides

Sponsored by: ACerS Manufacturing Division

Program Organizers: Bai Cui, University of Nebraska-Lincoln; James Hemrick, Oak Ridge National Laboratory; Mike Alexander, Allied Mineral Products; Eric Faierson, Quad City Manufacturing Laboratory/ Western Illinois University; Keith DeCarlo, Blasch Precision Ceramics

Wednesday AM | October 20, 2021 B234 | Greater Columbus Convention Center

Session Chairs: Brian Leonard, University of Wyoming; Fei Wang, University of Nebraska-Lincoln

10:00 AM Invited

Low Temperature Synthesis Methods for Nanoparticle Carbides: Brian Leonard¹; ¹University of Wyoming

10:40 AM

Bulk Amorphous SiCN Produced through Plasma Synthesis and Spark Plasma Sintering: Steven Herzberg¹; Suveen Mathaudhu¹; Lorenzo Mangolini¹; ¹University of California, Riverside

11:00 AM

Development of New Synthesis Route for Environmentally Friendly Thermoelectric Rare Earth Borocarbonitrides for Upcoming Carbonneutral Society: Hyoung-Won Son¹; Takao Mori²; Masatoshi Takeda¹; David Berthebaud²; Philipp Sauerschnig³; Quansheng Guo²; Tadachika Nakayama¹; ¹Nagaoka University of Technology; ²National Institute for Materials Science; ³National Institute of Advanced Industrial Science and Technology

ARTIFICIAL INTELLIGENCE

Materials Informatics for Images and Multidimensional Datasets — Session I

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division

Program Organizers: Amanda Krause, University of Florida; Alp Sehirlioglu, Case Western Reserve University; Daniel Ruscitto, General Electric

Wednesday AM | October 20, 2021 A124 | Greater Columbus Convention Center

Session Chair: Amanda Krause, University of Florida

8:00 AM Invited

Machine Learning and Image Processing Techniques for Materials Evaluation: Roger French¹; Benjamin Pierce¹; ¹Case Western Reserve University

8:30 AM

Quantitative Comparisons of 2D Microstructures with the Wasserstein Metric: Ethan Suwandi¹; Jeremy Mason¹; ¹University of California Davis

8:50 AM

Spatial and Statistical Representation of Strain Localization as a Function of the 3D Microstructure Using Multi-modal and Multi-scale Data Merging: Marie Charpagne¹; J.C. Stinville¹; Andrew T. Polonsky²; McLean P. Echlin¹; Kelly Nygren³; Dalton Shadle³; Matthew P. Miller³; Tresa M. Pollock¹; ¹University of California, Santa Barbara; ²Sandia National Laboratories; ³Cornell University

9:10 AM

Building a Database of Fatigue Fracture Images to train a CNN: *Katelyn Jones*¹; Paul Shade²; William Musinski²; Reji John²; Adam Pilchak²; Anthony Rollett¹; Elizabeth Holm¹; ¹Carnegie Mellon University; ²Air Force Research Laboratory

IRON AND STEEL (FERROUS ALLOYS)

New Frontiers in Physical Metallurgy of Steels — New Frontiers in Physical Metallurgy of Steels I

Sponsored by: AIST: MPPA Committee, TMS Steels Committee

Program Organizers: Matthias Militzer, University of British Columbia; Pello Uranga, CEIT and TECNUN (University of Navarra); Jonah Klemm-Toole, Colorado School of Mines; Amy Clarke, Colorado School of Mines; Amit Behera, QuesTek Innovations LLC

Wednesday AM | October 20, 2021 A210 | Greater Columbus Convention Center

Session Chair: To Be Announced

8:00 AM Invited

Microstructural Engineering and Accelerated Test Method Development to Achieve Low Cost, High Performance Solutions for Hydrogen Storage and Delivery: Kip Findley¹; John Speer¹; Lawrence Cho¹; Pawan Kathayat¹; Yuran Kong¹; Chris San Marchi²; Brian Kagay²; Samantha Lawrence³; Joseph Ronevich²; Ashok Saxena⁴; ¹Colorado School of Mines; ²Sandia National Laboratory; ³Los Alamos National Laboratory; ⁴WireTough Cylinders

8:40 AM

Microstructural Modeling and Design in Triple Nano-precipitate Strengthened Austenitic Steel: Colin Stewart¹; Richard Fonda²; Keith Knipling²; Patrick Callahan²; ¹NRC Associate at the US Naval Research Laboratory; ²US Naval Research Laboratory

9:10 AM

Improving the Fatigue Performance of Nitrided Steels with Amorphous and Crystalline Precipitates: Jonah Klemm-Toole¹; Kip Findley¹; ¹Colorado School of Mines

9:40 AM

Obtaining High Strength Ductility Combination by Quenching and Partitioning of Rolled Low Carbon Steel Sheet: Alok Singh¹; Basudev Bhattacharya²; Somjeet Biswas³; ¹Indian Institute of Technology Kharagpur; ²Tata Steel Limited, India; ³IIT Kharagpur

BIOMATERIALS

Next Generation Biomaterials — Session III

Sponsored by: ACerS Bioceramics Division, TMS Biomaterials Committee

Program Organizers: Roger Narayan, University of North Carolina; Min Wang, University of Hong Kong; Shawn Allan, Lithoz America LLC

Wednesday AM | October 20, 2021 A224 | Greater Columbus Convention Center

Session Chairs: Emiyl Lazarus, Rochester Institute of Technology; Hamdy Ibrahim, University of Tennessee Chattanooga; Sandra Musu Jusu, Worcester Polytechnic Institute

8:00 AM

Comparison of Various Post Coating Treatments on Plasma Sprayed HA Coatings: Manoj Mittal¹; *Tarun Goyal*¹; ¹IK Gujral Punjab Technical University Jalandhar

8:20 AM

Corrosion Assessment of Rare Earth Elements and Magnesiumbased Nanocomposites for Bio-implant Applications: Moataz Abdalla¹; Austin Sims¹; Meysam Haghshenas²; Manoj Gupta³; *Hamdy Ibrahim*¹; ¹University of Tennessee at Chattanooga; ²University of Toledo; ³National University of Singapore

8:40 AM Invited

Hierarchical Hybrid Carbon Nanotube Enhanced Bioscaffolds for Wound Healing: Soham Parikh¹; Wenhu Wang²; Tyler Nelson³; Courtney Sulentic¹; Sharmila Mukhopadhyay²; ¹Wright State University; ²The University of Maine; ³Wright-Patterson Air Force Base

9:00 AM

In Vivo And In Vitro Evaluation of PLGA-PEG Microspheres Loaded with LHRH-Targeted Drugs for Effective Breast Cancer Treatment: Sandra Jusu¹; John Obayemi¹; Ali Salifu¹; Chukwudalu Nwazojie²; Vanessa Uzonwanne¹; Olushola Odusanya³; Winston Soboyejo¹; Worcester Polytechnic Institute; ²African University of Science and Technology; ³Sheda Science and Technology Complex (SHESTCO)

9:20 AM

Innovative Solutions to Produce Bioceramic Implants by 3D Printing: Kenna Ritter¹; Peter Durcan¹; ¹3DCERAM SINTO INC

9:40 AM

Synthesis of Three-dimensional Ceramic Microlattices by Aerosol Jet Nanoparticle Printing and their Use in Cancer Biomarker Detection: *Bin Yuan*¹; Chunshan Hu¹; Azahar Ali¹; Rahul Panat¹; ¹Carnegie Mellon University

In-Person Event: OCTOBER 17-20, 2021• COLUMBUS, OHIO

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

CERAMIC AND GLASS MATERIALS

Preceramic Polymers; Synthesis, Processing, Modeling, and Derived Ceramics — Preceramic Polymers and Polymer Derived Ceramics I

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Matthew Dickerson, Air Force Research Laboratory; Gurpreet Singh, Kansas State University; Paolo Colombo, University of Padova; Günter Motz, Universität Bayreuth

Wednesday AM | October 20, 2021 B230 | Greater Columbus Convention Center

Session Chair: Matthew Dickerson, Air Force Research Laboratory

8:00 AM Introductory Comments Organizers' Remarks

8:10 AM Invited

UV Curable Preceramic Polymers and their Application in Additive Manufacturing: *Tobias Schaedler*¹; Kayleigh Porter¹; Mark O'Masta¹; Ekaterina Stonkevitch¹; Zak Eckel¹; Phuong Bui¹; ¹HRL Laboratories LLC

8:40 AM

Preparation of ZrC-embedded Glass-like Carbon Wires via Thermal Decomposition of Metal Organic Frameworks: Kaitlyn Shirey¹; Brittany Bonnett²; Xiaozhou Yang²; Amanda Morris²; Carolina Tallon²; ¹Virginia Polytechnic Institute; ²Virginia Tech

9:00 AM

X-ray Computed Tomography Investigation of CMC Densification via Polymer Infiltration and Pyrolysis: Derek King¹; Thomas Key¹; Connor Wycoff¹; Craig Przybyla²; Michael Cinibulk²; ¹UES Inc; ²AFRL

FUNDAMENTALS AND CHARACTERIZATION

Probing Defect Properties and Behavior under Mechanical Deformation and Extreme Conditions — Radiation Response and Defect Evolution

Sponsored by: TMS Nanomechanical Materials Behavior Committee, TMS Nuclear Materials Committee, TMS Mechanical Bahavior of Materials Committee

Program Organizers: Zhe Fan, Lamar University; Tianyi Chen, Oregon State University; Shijun Zhao, City University of Hong Kong; Mitra Taheri, Johns Hopkins University; Yury Osetskiy, Oak Ridge National Laboratory

Wednesday AM | October 20, 2021 B140/141 | Greater Columbus Convention Center

Session Chairs: Xing Wang, Pennsylvania State University; Tianyi Chen, Oregon State University

8:00 AM Invited

Radiation Enhanced Diffusion in Fe2O3 and Cr2O3: Kayla Yano¹; Aaron Kohnert²; Amitava Banerjee²; Danny Edwards¹; Edward Holby²; Tiffany Kaspar¹; Hyosim Kim²; Sandra Taylor¹; Yongqiang Wang²; Blas Uberuaga²; Daniel Schreiber¹; ¹Pacific Northwest National Laboratory; ²Los Alamos National Laboratory

8:30 AM

Impact of Grain Boundary and Surface Diffusion on Fission Gas Release in UO₂ Nuclear Fuel Using a Phase Field Model: Md Ali Muntaha¹; Dong-Uk Kim¹; Michael Tonks¹; ¹University of Florida

8:50 AM Invited

Long-range One-dimensional Glide of Defect Clusters in Irradiated Materials: Experimental Evidence and Consequences: Steven Zinkle¹; Ling Wang²; Yan-Ru Lin¹; ¹University of Tennessee; ²Oak Ridge National Lab

9:20 AM Invited

The Role of Anisotropy on the Defect Self-organization in Metals under Irradiation: Cheng Sun¹; ¹Idaho National Laboratory

9:50 AM Invited

Surprisingly High Irradiation-induced Defect Mobility in Fe3O4 as Revealed through In Situ Transmission Electron Microscopy: Djamel Kaoumi¹; Martin Owusu-Mensah¹; Angelica Lopez Morales¹; Kayla Yano²; Tiffany Kaspar²; Daniel Schreiber²; Blas Uberuaga³; ¹North Carolina State University; ²Pacific Northwest National Laboratory; ³Los Alamos National Laboratory

10:20 AM Break

10:40 AM Invited

Multimodal and Multiscale Defect Characterization and Property Correlation for Nuclear Fuel and Materials via Advanced Post Irradiation Examination Techniques: $Peng Xu^1$; Idaho National Laboratory

11:10 AM

Measuring Elemental Segregation and Vacancy Migration Using Atom Probe Tomography: Xing Wang¹; Jonathan Poplawsky²; Yanwen Zhang³; Karren More²; ¹Pennsylvania State University; ²Oak Ridge National Laboratory; ³University of Tennessee

FUNDAMENTALS AND CHARACTERIZATION

Processing—Microstructure—Property Relationships of Titanium and Titanium Alloys — Session I

Sponsored by: TMS Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Rongpei Shi, Lawrence Livermore National Laboratory; Michael Gram, Titanium Metals Corporation

Wednesday AM | October 20, 2021 B246 | Greater Columbus Convention Center

Session Chairs: Yufeng Zheng, University of Nevada Reno; Rongpei Shi, Lawrence Livermore National Laboratory

8:00 AM Invited

Exploiting Structural and Compositional Instabilities in Titanium Alloys to Optimize Microstructure/Property Interrelationships in Samples Fabricated by Additive Manufacuring: Brian Welk¹; Nevin Taylor¹; Zachary Kloenne¹; Yufeng Zheng²; Rajarshi Banerjee³; Hamish Fraser¹; ¹The Ohio State University; ²University of Nevada-Reno; ³University of North Texas

8:30 AM Invited

Regulating Elastic and Plastic Deformation by Heterogeneous Microstructure Design in Ti-alloys: Yunzhi Wang¹; ¹Ohio State University

9:00 AM Invited

Influence of Athermal vs. Isothermal Omega Precipitation and Alpha Precipitation on TRIP/TWIP Deformation Mechanisms in Metastable Beta Ti alloys (invited): Srinivas Aditya Mantri¹; Abhishek Sharma¹; Riyadh Salloom¹; MSKKY Nartu¹; Sriswaroop Dasari¹; Srinivasan Srivilliputhur¹; Rajarshi Banerjee¹; ¹University of North Texas

9:30 AM

Nano-scale O" Phase and Fine-scale Alpha Precipitation in a Metastable Beta Ti-5Al-5Mo-5V-3Cr Alloy: Dian Li¹; Stoichko Antonov²; Rongpei Shi³; Zachary Kloenne⁴; Hamish Fraser⁴; *Yufeng Zheng*⁵; ¹University of Nevada-Reno; ²Max-Planck-Institut für Eisenforschung GmbH; ³Lawrence Livermore National Laboratory; ⁴Ohio State University; ⁵University of Nevada-Reno

9:50 AM

A Data-driven Analysis for Selection and Use of Conventional Ti Alloys for Aeroengine Applications and Future Directions: *Tanjore Jayaraman*¹; Ramachandra Canumalla²; ¹University of Michigan-Dearborn; ²Weldaloy Specialty Forgings

10:10 AM Break

10:30 AM

The BMG to Ti Weld, a Pool for Microstructure: Property Characterization: Dan Sorensen¹; Eric Hintsala²; Jesse Pischlar³; Joseph Stevick⁴; Bernie Li³; Daniel Kiener⁵; Jason Meyers⁵; Antonio Ramirez⁻; Douglas Stauffer²; Robert Ritchie˚; ¹Boston Scientific; ²Bruker Nano Surfaces & Metrology; ³Medtronic; ⁴Hummingbird Scientific; ⁵Montanuniversitat, Leoben; ⁶University of Minnesota; ¬Ohio State University; ⁶University of California, Berkeley

10:50 AM

Role of Novel Highly-indexed Twinning in Hierarchical a Microstructure in Metastable ß Ti-5Al-5Mo-5V-3Cr Alloy: Dian Li¹; Wenrui Zhao¹; Xing Zhang²; Stoichko Antonov³; Yiliang Liao²; Yufeng Zheng¹; ¹University of Nevada, Reno; ²Iowa State University; ³Max-Planck-Institut für Eisenforschung GmbH

11:10 AM

The Composition-processing-microstructure-property Relationships of Fe and Al Modified Ti-Cr Alloys: Joann Ballor¹; Jonathan Poplawsky²; Elizabeth Kautz³; Bharat Gwalani³; Arun Devaraj³; Masahiko Ikeda⁴; Carl Boehlert¹; ¹Michigan State University; ²Oak Ridge National Laboratory; ³Pacific Northwest National Laboratory; ⁴Kansai University

MATERIALS-ENVIRONMENT INTERACTIONS

Progressive Solutions to Improve Corrosion Resistance for Nuclear Waste Storage — Corrosion and Aspects of Environmentally Safe Processing of Nuclear Waste Storage Materials

Sponsored by: TMS Corrosion and Environmental Effects Committee, ACerS Glass & Optical Materials Division

Program Organizers: Madeleine Jordache, Stevens Institute of Technology; Gary Pickrell, Virginia Tech

Wednesday AM | October 20, 2021 A221 | Greater Columbus Convention Center

Session Chairs: Madeleine Jordache, Stevens Institute of Technology; Gary Pickrell, Virginia Tech

10:20 AM Introductory Comments

10:25 AM

Using Stress Modelling to Understand Effects of Pit Morphology on Stress Corrosion Cracking Initiation in Austenitic Stainless Steels: Alana Parev¹; ¹The Ohio State University

10:45 AM

A Geopolymer for Hanford Secondary Waste: Sepideh Akhbarī¹; Weiliang Gong¹; Werner Lutze¹; Ian Pegg¹; ¹Catholic University of America -Vitreous State Lab

11:05 AM Invited

Understanding Corrosion of Nuclear Waste Glasses through Molecular Dynamics Simulations and Quantitative Structural Property Relationship Analysis: $\textit{Jincheng Du}^1$; $^1\text{University of North Texas}$

11:35 AM Invited

Predicting Zeolites' Stability during the Corrosion of Nuclear Waste Immobilization Glasses: *Mathieu Bauchy*¹; ¹University of California, Los Angeles

In-Person Event: OCTOBER 17-20, 2021• COLUMBUS, OHIO On-Demand Content available:

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

CERAMIC AND GLASS MATERIALS

Solid-state Optical Materials and Luminescence Properties — Session I

Sponsored by: ACerS Basic Science Division, ACerS Engineering Ceramics Division, ACerS Glass & Optical Materials Division

Program Organizers: Yiquan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory; Akio Ikesue, World-Lab. Co., Ltd; Rong-Jun Xie, Xiamen University; Mathieu Allix, University of Orle'ans; Kiyoshi Shimamura, National Institute for Materials Science; Liangbi Su, Shanghai Institute of Ceramics; Dariusz Hreniak, Institute of Low Temperature and Structure Research

Wednesday AM | October 20, 2021 B232 | Greater Columbus Convention Center

Session Chairs: Yiquan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory

8:00 AM Invited

Non Rule-of-mixtures Thermal Expansion in Core-shell Based Nanocrystalline Composite Ceramics: James Wollmershauser¹; Kevin Anderson²; Benjamin Greenberg²; Heonjune Ryou¹; Edward Gorzkowski¹; Boris Feigelson¹; ¹U.S. Naval Research Laboratory; ²National Research Council Postdoctoral Research Fellow sited at U.S. Naval Research Laboratory

8:20 AM

Processing of Rare Earth Doped Ga203 Transparent Ceramics: *Jiao Li*¹; Yiquan Wu¹; ¹Alfred University

8:40 AM Invited

Additive Manufacturing of Tailored Laser Gain Media: Steve Payne¹; Zachary Seeley¹; Nerine Cherepy¹; Thomas Rudzik¹; Tyler Wineger¹; Ian Phillips¹; Alex Drobshoff¹; Tim Yee¹; ¹Lawrence Livermore Lab

9:00 AM

Optical Basicity of Oxynitrides: *Doris Möncke*¹; Sharafat Ali²; Bo Jonson²; Efstratios Kamitsos³; ¹Alfred University; ²Linnaeus Univerity; ³National Hellenic Research Foundation

9:20 AM

Highly Transparent MgGa2O4 and Ni Doped MgGa2O4 Semiconducting Ceramics: $Guangran\ Zhang^1$; Yiquan Wu 1 ; 1 Alfred University

9:40 AM Invited

A Review of Sharp Indentation to Probe Contact Damage in Glass: Brian Davis¹; Ivar Reimanis¹; Amanda Bellafatto¹; Amber Tremper²; Scott Glaesemann²; ¹Colorado School of Mines; ²Corning Incorporated

SPECIAL TOPICS

ACerS Robert B. Sosman Award Symposium: Bridging the Gap between Atomistic and Continuum Approaches to Interface Science — Sosman Presentation

Sponsored by: ACerS Basic Science Division

Program Organizer: John Blendell, Purdue University

Wednesday PM | October 20, 2021 B130 | Greater Columbus Convention Center

Session Chair: John Blendell, Purdue University

1:00 PM Invited

Combining Atomistic and Continuum Approaches Towards Understanding Interfaces: Wayne Kaplan¹; ¹Technion - Israel Institute of Technology

SPECIAL TOPICS

ACerS Robert B. Sosman Award Symposium: Bridging the Gap between Atomistic and Continuum Approaches to Interface Science — Sosmann II

Sponsored by: ACerS Basic Science Division

Program Organizer: John Blendell, Purdue University

Wednesday PM | October 20, 2021 B130 | Greater Columbus Convention Center

Session Chair: Carol Handwerker, Purdue University

2:00 PM Invited

Grain Boundaries in the Wild: *Gregory Rohrer* 1 ; 1 Carnegie Mellon University

2:30 PM Invited

Stress-Induced Interface Instability in Battery Electrode Materials: *Ming Tang*¹; ¹Rice University

3:00 PM Invited

Tracing Impurities at Surfaces and Interfaces of Renewable Energy Materials: Christina Scheu¹; Joohyun Lim¹; Se-Ho Kim¹; Raquel Aymerich Armengol¹; Rajib Sahu¹; Olga Kasian¹; Leigh T. Stephenson¹; Baptiste Gault¹; ¹Max-Planck-Institut Fuer Eisenforschung Gmbh

3:30 PM Break

3:50 PM Invited

Surface Segregation in Multicomponent High Entropy Alloys: A Comparison between Atomistic Simulations and a Simple Analytical Model: Paul Wynblatt¹; Dominique Chatain²; ¹Carnegie Mellon University; ²Aix-Marseille Univ, CNRS, CINAM

4:20 PM Invited

Disconnections, Faceting, Solutes and Their Impact on Grain Boundary Migration in Ceramics: Rheinheimer Wolfgang¹; Hadas Sternlicht²; ¹Forschungszentrum Jülich; ²Brown University

4:50 PM Invited

Mechanistic Insights into the Effect of Heating Rate on Sintering and Sintering Stress Evolution: Shen Dillon¹, ¹University of Illinois

ADDITIVE MANUFACTURING

Additive Manufacturing of High and Ultra-High Temperature Ceramics and Composites: Processing, Characterization and Testing — Extrusion-based Additive Manufacturing Methods

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Corson Cramer, Oak Ridge National Laboratory; Greg Hilmas, Missouri University of Science and Technology; Lisa Rueschhoff, Air Force Research Laboratory

Wednesday PM | October 20, 2021 A111 | Greater Columbus Convention Center

Session Chair: Greg Hilmas, Missouri University of Science and Technology

2:00 PM

Additive Manufacturing Of ZrB₂-SiC Heat Exchanger Geometries by Ceramic on Demand Extrusion: Nicholas Timme¹; Marharyta Lakusta¹; Jeremy Watts¹; Gregory Hilmas¹; William Fahrenholtz¹; Ming Leu¹; David Lipke¹; ¹Missouri University of Science and Technology

2:20 PM

Ceramic On-demand Extrusion (CODE) of Functionally Graded ZrB₂-Mo: Austin Martin¹; Sachin Choudhary¹; Jeremy Watts¹; Gregory Hilmas¹; Ming Leu¹; Tieshu Huang²; ¹Missouri University of Science and Technology; ²NNSA's Kansas City National Security Campus

2:40 PM

Additive Manufacturing of Aqueous Based Silicon Nitride Suspensions via Direct Writing: William Costakis¹; Connor Wyckoff¹; Lisa Rueschhoff¹; ¹Air Force Research Labs

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Equipment, Instrumentation and In-Situ Process Monitoring — Novel Instrumentation

Program Organizers: Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Joy Gockel, Colorado School of Mines; Sneha Prabha Narra, Carnegie Mellon University

Wednesday PM | October 20, 2021 A121 | Greater Columbus Convention Center

Session Chair: Joy Gockel, Colorado School of Mines

3:00 PM Invited

Ultrasonics for Monitoring Melt Pool Dynamics and Solidification: *Christopher Kube*¹; Jared Gillespie¹; Tao Sun²; Cang Zhao³; Niranjan Parab⁴; Anthony Rollett⁵; ¹The Pennsylvania State University; ²University of Virginia; ³Tsinghua University; ⁴Intel Corporation; ⁵Carnegie Mellon University

3:40 PM

Functionally Graded Material Development by Leveraging Ultrasonic Grain Refinement in Additive Manufactured Nickel 718: Nathaniel McNees¹; Satish Rajaram²; Mark Warchol²; Brian Wisner¹; ¹Ohio University; ²Texas Research Institute-Austin

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Microstructure, Properties and Alloy Development — Additive Manufacturing: Miscellaneous

Program Organizers: Prashanth Konda Gokuldoss, Tallinn University of Technology; Juergen Eckert, Erich Schmid Institute of Materials Science; Zhi Wang, South China University of Technology

Wednesday PM | October 20, 2021 A120 | Greater Columbus Convention Center

Session Chair: Roman Maev, University of Windsor

2:00 PM

Additive Manufacturing of Metallic Materials: Mechanical Properties: Prashanth Konda Gokuldoss¹; ¹Tallinn University of Technology

2:20 PM

Advancements in High Pressure Heat Treatment for AM Parts: Chad Beamer¹; ¹Quintus Technologies

2:40 PM

Avoiding Deleterious Phase Formation in Abrupt Interface Bonding of Multi-material Structures: *Nicholas Jones*¹; Jack Beuth¹; Maarten de Boer¹; ¹Carnegie Mellon University

3:00 PM

Controlling High Temperature Mechanical Performance of Superalloys Fabricated via Laser Powder Bed Fusion through Processing Parameter Variation: Nicholas Lamprinakos¹; Joseph Pauza¹; Anthony Rollett¹; ¹Carnegie Mellon University

3:20 PM

Effects of Extrusion-based Additive Manufacturing on Thermoelectric Transport in Nickel and Bismuth: *Victoria Stotzer*¹; Christian Apel¹; Sarah Watzman¹; Ashley Paz y Puente¹; ¹University of Cincinnati

3:40 PM Break

4:00 PM

Location-specific Fatigue Life Predictions in AM Parts Using Physics-based Models within an ICME Framework: Manisha Banker¹; Ayman Salem¹; Daniel Satko¹; Jan Kasprzak²; Nam Phan²; ¹MRL Materials Resources LLC; ²Naval Air Systems Command

4:20 PM

Low Pressure Cold Spray Additive Manufacturing of Molds and Dies: Roman Maev¹; Volf Leshchynsky¹; Ahmed Elseddawy¹; Emil Strumban¹; John Wladarski¹; ¹IDIR

4:40 PM

Microstructural and Electrochemical Properties of Additively Manufactured Alloys: *Ali Raza*¹; Sohaib Khan²; Waseem Haider¹; ¹Central Michigan University; ²Islamic University of Madinah

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Microstructure, Properties and Alloy Development — Fe-based Alloys

Program Organizers: Prashanth Konda Gokuldoss, Tallinn University of Technology; Juergen Eckert, Erich Schmid Institute of Materials Science; Zhi Wang, South China University of Technology

Wednesday PM | October 20, 2021 A115 | Greater Columbus Convention Center

Session Chair: Rangasayee Kannan, Oak Ridge National Laboratory

2:00 PM

Binder Jet Printing of Austenitic 316L Stainless Steel: Processing, Densification, Microstructure, and Mechanical Properties: *M Jamalkhani Khameneh*¹; Amir Mostafaei¹; ¹Illinois Institute of Technology

2:20 PM

Deformation Mechanisms in 316L Stainless Steel Fabricated by Additive and Additive + Subtractive (Hybrid) Manufacturing: Rangasayee Kannan¹; Peeyush Nandwana¹; Thomas Feldhausen¹; ¹Oak Ridge National Laboratory

2:40 PM

Influence of the Cellular Subgrain Feature in Additively Manufactured 316L Stainless Steel on Mechanical Properties: Janith Wanniarachchi¹; John Michopoulos²; Ajit Achuthan¹; ¹Clarkson University; ²Naval Research Laboratory

3:00 PM

Microstructural Evolution in Maraging Steels: From Powder to Additive Manufacturing: Seyedamirreza Shamsdini¹; Mohsen Mohammadi¹; ¹UNB

3:20 PM Break

3:40 PM

Mechanical Properties and Metallurgical Characteristics of H13 Tool Steel Additively Manufactured in Low Vacuum and Heated Condition: Shinji Matsushita¹; Hirotsugu Kawanaka¹; Hyakka Nakada¹; Steven Osma¹; Yusuke Yasuda¹; Seung Hwan Park¹; ¹Hitachi Ltd.

4:00 PM

Nano and Macro Mechanical Properties of Additively and Traditionally Manufactured 17-4 PH Stainless Steel: Hisham Abusalma¹; Mohammad Sepahi¹; Sandeep Khadka¹; Dana Ingalsbe¹; Natalia Esparragoza¹; Matthew Rosser¹; Xiaoqing Wang¹; Hamid Eisazadeh¹; ¹Old Dominion University

4:20 PM

Use of Water Atomized Powder with Non-spherical Morphology in a Laser Powder Bed Fusion Additive Manufacturing Process: Mahya Shahabi¹; Tianyu Zhu¹; Jagannath Jayachandran¹; *Sneha Prabha Narra*²; ¹Worcester Polytechnic Institute; ²Carnegie Mellon University

ADDITIVE MANUFACTURING

Additive Manufacturing: Large-Scale Metal Additive Manufacturing — Microstructure, Property, and Performance: Characterization and Simulation

Program Organizers: Yousub Lee, Oak Ridge National Laboratory; Antonio Ramirez, Ohio State University; Yashwanth Bandari, 'Meltio Inc.; Duckbong Kim, Tennessee Technological University; Wei Zhang, Ohio State University

Wednesday PM | October 20, 2021 A114 | Greater Columbus Convention Center

Session Chairs: Kaiwen Zhang, The Ohio State University; Antonio Ramirez, The Ohio State University

2:00 PM

Wire Arc Processing of Stainless Steels; Microstructure and Properties: Patxi Fernandez-Zelai¹; Quinn Campbell¹; Chris Ledford¹; Michael Kirka¹; Andrzej Nycz¹; Mark Noakes¹; Lonnie Love¹; ¹Oak Ridge National Laboratory

2:30 PM

Effect of Inhomogeneous Grain Size on the Deformation Characteristics of Bimetallic Additively Manufactured Structure (BAMS) of 316L Austenitic Stainless Steel and Inconel 625: Rumman Ahsan¹; Xuesong Fan²; Jonathan Poplawsky³; Peter Liaw²; Duck Bong Kim¹; ¹Tennessee Technological University; ²University of Tennessee, Knoxville; ³Oak Ridge National Laboratory

2:50 PM

Microstructure Modification of GMAW-DED 316L Stainless Steel: Jacob Rindler¹; Antonio Ramirez¹; ¹Ohio State University

3:10 PM

Towards Understanding Microstructure Evolution during Wire Arc Additive Manufacturing of Maraging 250 Thin-wall Parts: *Yao Xu*¹; Brajendra Mishra¹; Sneha Narra¹; ¹Worcester Polytechnic Institute

3:30 PM Break

3:50 PM

Wire • Arc Additive Manufacturing (WAAM) of Al0.1CoCrFeNi High-Entropy Alloy (HEA): Rumman Ahsan¹; Xuesong Fan²; Jonathan Poplawsky³; Peter Liaw²; Duck Bong Kim¹; ¹Tennessee Technological University; ²University of Tennessee, Knoxville; ³Oak Ridge National Laboratory

4:10 PM

Process Development for Laser Hot Wire Additive Manufacturing of Ti-6Al-4V: Elizabeth Chang-Davidson¹; Brandon Abranovic¹; Jack Beuth¹; ¹Carnegie Mellon University

4:30 PM

A Machine Learning-based Geometric Compensation Method for Metal Additive Manufacturing: Wen Dong¹; Albert To¹; ¹University of Pittsburgh

ADDITIVE MANUFACTURING

Additive Manufacturing: Mechanisms and Mitigation of Aqueous Corrosion and High-temperature Oxidation — Corrosion Assessment of Additively Manufactured Parts II

Program Organizers: Amir Mostafaei, Illinois Institute of Technology; Yashar Behnamian, University of Alberta; Bryan Webler, Carnegie Mellon University

Wednesday PM | October 20, 2021 A112 | Greater Columbus Convention Center

Session Chair: To Be Announced

2:00 PM

Influence of Heat Treatment on Electrochemical Behavior of Additively Manufactured 7050 Aluminum Alloy: Rupesh Rajendran¹; Kevin Chasse²; Preet Singh¹; ¹Georgia Institute of Technology; ²Northrop Grumman Mission Systems

2:30 PM

Electrochemical Behavior of Additively-manufactured Steels: *M Jamalkhani Khameneh*¹; Amir Mostafaei¹; ¹Illinois Institute of Technology

3:00 PM

Corrosion Behavior of Additively Manufactured Parts Made Using Non-spherical Ti-6Al-4V Powder in 3.5 wt% NaCl Solution: Sourabh Bagi¹; Muktesh Paliwal²; Anthony Rollett³; Amir Mostafaei¹; ¹Illinois Institute of Technology; ²Kymera International - Reading Alloys; ³Carnegie Mellon University

3:30 PM Break

3:50 PM

Laser Shock Peening Effect on 5xxx Sensitization and Exfoliation of 5XXX series Aluminum Alloys: Saba N. Esmaeely¹; Allison Akman²; Gabriella Marino¹; Jenifer Locke¹; ¹The Ohio State University; ²Naval Surface Warfare Center,

4:20 PM

Corrosion Behavior of Laser Powder Bed Fusion Processed Ti-6Al-4V in Different Electrolytes: Melody Delpazir¹; Muktesh Paliwal²; Marcella Vaicik¹; Amir Mostafaei¹; ¹Illinois Institute of Technology; ²Kymera International - Reading Alloys

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Materials for Harsh Environments — Session IV

Sponsored by: ACerS Electronics Division

Program Organizers: Navin Manjooran, Solve Technology and Research, Inc.; Gary Pickrell, Virginia Tech

Wednesday PM | October 20, 2021 A223 | Greater Columbus Convention Center

Session Chairs: Gary Pickrell, Professor, Virginia Tech; Navin Manjooran, Chairman, Solve

2:00 PM

Passive Wireless Sensors for Real Time Temperature and Corrosion Monitoring of Coal Boiler Components Under Flexible Operation: Brian Jordan¹; Kavin Idhaiam¹; Zachary Lynch¹; Daryl Reynolds¹; Edward Sabolsky¹; ¹WVU

2:20 PM

Development of High Performance H2 Permeation Barrier Coating with Good Thermal Cycling Resistance: Sumit Bhattacharya¹; Yinbin Miao¹; Nicholas Stauff¹; Taek Kim¹; Abdellatif Yacout¹; ¹Argonne National Laboratory

2:40 PM

Influence of Alkaline Earth Metals on Structure Formation, Mechanical and Special Properties of Aircraft Casting from Magnesium Alloys: Vadim Shalomeev¹; Sergei Sheyko¹; *levgeniia Chetvertak*¹; ¹National University "Zaporizhska Politecnics"

3:00 PM

Microstructural Stability at Elevated Temperature of the Ni-based Electron Beam Welded Superalloys Dissimilar Joint: Oskar Dziuba¹; Grzegorz Cempura¹; Agnieszka Wusatowska-Sarnek²; Adam Kruk¹; ¹AGH University of Science and Technology; ²Pratt & Whitney

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Materials for Harsh Environments — Session V

Sponsored by: ACerS Electronics Division

Program Organizers: Navin Manjooran, Solve Technology and Research, Inc.; Gary Pickrell, Virginia Tech

Wednesday PM | October 20, 2021 A224 | Greater Columbus Convention Center

Session Chairs: Gary Pickrell, Professor, Virginia Tech; Navin Manjooran, Chairman, Solve

2:00 PM

Corrosion Behaviors of Alloys in High Temperature Supercritical CO₂ with Impurity: Yimin Zeng¹; Kaiyang Li²; ¹NRCan, Canada

2:20 PM

Assessment of Conductive Sites on Carbon Fiber Reinforced Polymer Composite Using Different Electrochemical Experimental Methods: *Priyanka Adapala*¹; ¹The Ohio State University

2:40 PM

The Importance of Quality Control, Characterization and Testing in Manufacturing and Production: Jeanette Vass¹; ¹Auto and Materials

3:00 PM

Scandium-containing Filler Material for Welding Aircraft Castings Made of High-temperature Magnesium-based Alloy: Vadim Shalomeev¹; Sergei Sheyko²; *Ievgeniia Chetvertak*¹; ¹National University "Zaporizhska Politecnics"; ²Zaporizhzhia National University

CERAMIC AND GLASS MATERIALS

Ceramics and Glasses Modeling by Simulations and Machine Learning — Session II

Sponsored by: ACerS Glass & Optical Materials Division

Program Organizers: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas at Arlington; N. M. Anoop Krishnan, Indian Institute of Technology Delhi

Wednesday PM | October 20, 2021 B231 | Greater Columbus Convention Center

Session Chairs: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas at Arlington; N. M. Anoop Krishnan, Indian Institute of Technology Delhi

2:00 PM

Ceramics from Polymers — Results of Ab Initio Molecular Dynamic Simulations: Peter Kroll¹; ¹University of Texas at Arlington

2:20 PM

Fusing Experimental and Simulation Datasets in Machine Learning for Predicting Glass Properties: Mathieu Bauchy¹; ¹University of California, Los Angeles

2:40 PM

Bayesian Optimization of Silicon Nitride Empirical Potentials: *Tobias Kroll*¹; Peter Kroll¹; ¹University of Texas at Arlington

3:00 PM

Development of a Reactive Force Field (ReaxFF) for Simulation of Polymer-derived Ceramics: Shariq Haseen¹; Peter Kroll¹; ¹University of Texas at Arlington

3:20 PM Panel Discussion: Challenges and Opportunities in Machine Learning for Materials

MATERIALS-ENVIRONMENT INTERACTIONS

Computation Assisted Materials Development for Improved Corrosion Resistance — B: High Temperature Corrosion

Program Organizers: Rishi Pillai, Oak Ridge National Laboratory; Laurence Marks, Northwestern University

Wednesday PM | October 20, 2021 A222 | Greater Columbus Convention Center

Session Chair: David Shifler, Office of Naval Research

2:00 PM Introductory Comments

2.05 DM

Hydrothermal Corrosion of Silicon Carbide: *Jianqi XI*¹; Dane Morgan¹; Izabela Szlufarska¹; ¹University of Wisconsin-Madison

2:25 PM

Solubility Based Prediction of Corrosion in Molten Chloride Salts: Cory Parker¹; Rishi Pillai¹; Dino Sulejmanovic¹; Bruce Pint¹; ¹Oak Ridge National Laboratory

2:45 PM

Understanding and Reducing Bias in Machine Learning to Enhance Its Predictive and Extrapolative Capabilities: Application to the Oxidation Kinetics and Spallation Behavior of High-temperature NiCr-based Alloys: Marie Romedenne¹; Rishi Pillai¹; Jian Peng¹; Bruce Pint¹; Allen Haynes¹; Govindarajan Muralidharan¹; Dongwon Shin¹; ¹Oak Ridge National Laboratory

NANOMATERIALS

Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — Nanoparticles & Nanocomposites II

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Polytechnic Institute and State University; Edward Gorzkowski, Naval Research Laboratory; Jian Shi, Rensselear Polytechnich University; Michael Naguib, Tulane University; Sanjay Mathur, University of Cologne

Wednesday PM | October 20, 2021 B240/241 | Greater Columbus Convention Center

Session Chairs: Kathy Lu, Virginia Tech; Edward Gorzkowski, Naval Research Laboratory

2:00 PM

Bulk Nanostructured Ceramics Research at the US Naval Research Lab: *Edward Gorzkowski*¹; James Wollmershauser¹; Eric Patterson¹; Heonjune Ryou¹; Kevin Anderson¹; Boris Feigelson¹; ¹Naval Research Laboratory

2:20 PM Invited

Polymer Derived Ceramics and Composites- From Nanoscale to Bulk Properties: Lisa Rueschhoff¹; Zlatomir Apostolov¹; Matthew Dickerson¹; Michael Cinibulk¹; ¹Air Force Research Laboratory

2:50 PM Invited

Polymer-Derived Ceramic Nanocomposites for Applications at High Temperatures and in Harsh Environments: Emanuel Ionescu¹; ¹TU Darmstadt

3:20 PM

Sintering, Structure, and Properties of Y₂O₃-ZrO₂-Al₂O₃ Core-Shell Nanocomposite Ceramics: *Kevin Anderson*¹; Benjamin Greenberg¹; Mason Wolak¹; James Wollmershauser¹; Boris Feigelson¹; ¹U.S. Naval Research Laboratory

FUNDAMENTALS AND CHARACTERIZATION

Emergent Materials under Extremes and Decisive <I>In Situ</I> Characterizations — Materials Characterization at Extreme Conditions

Sponsored by: ACerS Basic Science Division

Program Organizers: Hongwu Xu, Los Alamos National Laboratory; Xiaofeng Guo, Washington State University; Xujie Lu, Center for High Pressure Science & Technology Advanced Research; Hua Zhou, Argonne National Laboratory; Judith Driscoll, University of Cambridge

Wednesday PM | October 20, 2021 B244/245 | Greater Columbus Convention Center

Session Chairs: Hongwu Xu, Los Alamos National Laboratory; Xiaofeng Guo, Washington State University; Hua Zhou, Argonne National Laboratory

2:00 PM Invited

In-Situ Synchrotron X-ray Absorption Spectroscopic Investigations of Actinide Speciation under Hydrothermal Conditions: *Robert Mayanovic*¹; Jason Baker²; Diwash Dhakal¹; Nadib Akram¹; Xiaofeng Guo³; Hakim Boukhalfa²; Cheng-Jun Sun⁴; Hongwu Xu²; ¹Missouri State University; ²Los Alamos National Laboratory; ³Washington State University; ⁴Argonne National Laboratory

2:20 PM

In-situ Two-dimensional X-ray Diffraction (XRD2) Studies On High-temperature Phase Transformations of 2D Titanium Carbide (Ti3C2Tx) MXene: Brian Wyatt¹; Srinivasa Kartik Nemani¹; Bowen Zhang¹; Babak Anasori¹; ¹Integrated Nanosystems Development Institute (INDI), IUPUI

2:40 PM Invited

Proton Irradiation Effects in Additively Manufactured 316L Stainless Steels: Cheng Sun¹; Michael McMurtrey¹; ¹Idaho National Laboratory

3:00 PM

Temperature Measurements in Radiation Environments Using Piezoelectric Surface Acoustic Wave Resonators: Maha Yazbeck¹: Ryan Chesser¹: Yuzhou Wang²: Marat Khafizov¹: ¹The Ohio State University: ²Idaho National Lab

ENERGY

Energy Materials for Sustainable Development — Capacitative, Chemical and Thermal Storage and Conversion

Sponsored by: ACerS Energy Materials and Systems Division

Program Organizers: Armin Feldhoff, Leibniz University Hannover; Kyle Brinkman, Clemson University; Krista Carlson, University of Utah; Eva Hemmer, University of Ottawa; Nikola Kanas, Institute Biosense, University of Novi Sad; Kjell Wiik, Norwegian University of Science and Technology; Lei Zuo, Virginia Tech; Stephanie Lee, Stevens Institute of Technology; Muhammad Hajj, Stevens Institute of Technology

Wednesday PM | October 20, 2021 A216 | Greater Columbus Convention Center

Session Chairs: Kevin Huang, University of South Carolina; Kyle Brinkman, Clemson University

2:00 PM Invited

Thermomagnetic Transport in 2D Layered Materials: Mona Zebarjadi¹; Md. Sabbir Akhanda¹; Emad Rezaei¹; ¹University of Virginia

2:30 PM Invited

Synthesis of New Antimonides for Thermoelectric Applications: Julia Zaikina¹; ¹lowa State University

2:50 PM

Enhancement of Thermoelectric Properties of Bismuth Sulfide by Halide Substitution: Farheen Anjum^{1, 1}IIT Kanpur

FUNDAMENTALS AND CHARACTERIZATION

High Entropy Materials: Concentrated Solid Solutions, Intermetallics, Ceramics, Functional Materials and Beyond II — Processing and Properties III

Sponsored by: TMS Alloy Phases Committee, TMS Mechanical Behavior of Materials Committee

Program Organizers: Michael Gao, National Energy Technology Laboratory; Xingbo Liu, West Virginia University; Peter Liaw, University of Tennessee; Jian Luo, University of California, San Diego; Yiquan Wu, Alfred University; Yu Zhong, Worcester Polytechnic Institute; Mitra Taheri, Johns Hopkins University; Amy Clarke, Colorado School of Mines

Wednesday PM | October 20, 2021 B132 | Greater Columbus Convention Center

Session Chair: Fei Wang, University of Nebraska Lincoln

2:00 PM

Behavior of a High-entropy Alloy in Molten Salt Environments under Biaxial Stresses: Wylie Simpson¹; James Earthman¹; Xinyi Wang¹; ¹University of California Irvine

2:20 PM

Control of Local Distortions in High-entropy Oxides: Keivan Esfarjani¹; Jonathan Kaufman¹; ¹University of Virginia

In-Person Event: OCTOBER 17-20, 2021 • COLUMBUS, OHIO

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

2:40 PM

Microstructure and Phase Stability of High Entropy (RE)PO₄ Monazitestructured Ceramics: Nadjia Motley¹; Adriana Mejia¹; Yingie Yang¹; Daniel Mumm¹; Martha Mecartney¹; ¹University of California, Irvine

3.00 DM

Surface Enhancement of Multi-principal Element Alloys by Gas Nitriding: Yu-Hsuan Lin¹; David Poerschke¹; ¹University of Minnesota

3:20 PM

Structural and Mechanical Properties of High Entropy Metal-nitride: Saro San¹; Wai-Yim Ching²; ¹University of Missouri; ²University of Missouri Kansas City

3:40 PM Break

4:00 PM

Multi-component High Entropy Ultra-high Temperature Carbides: Solid-solution to High-entropy Phase Formation: Ambreen Nisar¹; Tyler Dolmetsch¹; Tanaji Paul¹; Cheng Zhang¹; Benjamin Boesl¹; Arvind Agarwal¹; ¹Florida International University

4:20 PM

The Dynamic and Sensing Performance of 3D Printed Functionally Graded Elastomeric Lattice Structures: Charles Dwyer¹; Joao Garretto¹; Ronald Yarwood¹; Jae-Won Choi²; Eric MacDonald³; Pedro Cortes¹; Gina Morrison¹; ¹Youngstown State University; ²University of Akron; ³The University of Texas at El Paso

4:40 PM

Temperature Dependent Mechanical Behavior of the Au-Zn-Al Ternary System: *Taylor Jacobs*¹; Seth Imhoff¹; ¹Los Alamos National Laboratory

5:00 PM

The Research Thermoplastic Deformation Modes of Dual-phase Special Alloys for Obtaining Rational Intermetallic Structure: Borys Sereda¹; Dmytro Sereda¹; Irina Kruglyak¹; Yuriy Belokon²; ¹Dneprovsky State Technical University; ²Zaporizhzhya National University

FUNDAMENTALS AND CHARACTERIZATION

High Entropy Materials: Concentrated Solid Solutions, Intermetallics, Ceramics, Functional Materials and Beyond II — Theory and Modeling II

Sponsored by: TMS Alloy Phases Committee, TMS Mechanical Behavior of Materials Committee

Program Organizers: Michael Gao, National Energy Technology Laboratory; Xingbo Liu, West Virginia University; Peter Liaw, University of Tennessee; Jian Luo, University of California, San Diego; Yiquan Wu, Alfred University; Yu Zhong, Worcester Polytechnic Institute; Mitra Taheri, Johns Hopkins University; Amy Clarke, Colorado School of Mines

Wednesday PM | October 20, 2021 B131 | Greater Columbus Convention Center

Session Chairs: Mike Widom, Carnegie Mellon University; Stefano Curtarolo, Duke University

2:00 PM Invited

To Mix, or not to Mix: Progresses in Entropy Descriptors: Stefano Curtarolo¹, ¹Duke University

2:30 PM Invited

Development of Interatomic Potentials for Highly Concentrated/ Entropy-stabilized Systems: *Ridwan Sakidja*¹; Andrew Duff²; Bikash Timalsina¹; Tyler McGilvry-James¹; ¹Missouri State University; ²Daresbury Laboratory

2:50 PM Invited

First-principles Predictions of Chemical Short-range Order in High Entropy Alloys: *Michael Widom*¹; ¹Carnegie Mellon University

3:20 PM Break

3:40 PM Invited

Temperature-dependent Configurational Entropy Calculations for Refractory High-entropy Alloys: Chiraag Nataraj¹; Axel van de Walle¹; Amit Samanta²; ¹Brown University; ²Lawrence Livermore National Lab

4:00 PM Invited

Phase-field Modelling of Transformation Pathways and Microstructural Evolution in MPEAs (Multi Principal Element Alloys): Kamalnath Kadirvel¹; Jacob Jensen¹; Zachary Kloenne¹; Rajarshi Banerjee²; Hamish Fraser¹; Yunzhi Wang¹; ¹Ohio State University; ²University of North Texas

4:20 PM

Atomistic Simulations of the Structure and Mechanical Properties of Grain Boundaries in High Entropy Alloys: Fadi Abdeljawad¹; ¹Clemson University

CERAMIC AND GLASS MATERIALS

Journal of the American Ceramic Society Awards Symposium — Journal of the American Ceramic Society Awards Symposium II

Sponsored by: ACerS

Program Organizer: William Fahrenholtz, Missouri University of Science and Technology

Wednesday PM | October 20, 2021 B233 | Greater Columbus Convention Center

Session Chairs: William Fahrenholtz, Missouri University of Science and Technology; Jonathon Foreman, American Ceramic Society

2:00 PM Invited

In-Situ Resistance Degradation & Switching of Bulk YSZ & STO Single Crystals: Ana Alvarez¹; I-Wei Chen¹; ¹University of Pennsylvania

2:30 PM Invited

Glassy Ga-Te Binaries: Structure and Properties for Phase-change Memory Applications: Andrey Tverjanovich¹; Maria Bokova²; Chris Benmore³; Daniele Fontanari Fontanari²; Anton Sokolov²; Mohammad Kassem²; Maxim Khomenko⁴; *Eugene Bychkov*⁵; ¹Institute of Chemistry, Saint Petersburg State University; ²Université du Littoral Côte d'Opale; ³Advanced Photon Source, Argonne National Laboratory; ⁴ILIT RAS-Branch of the FSRC "Crystallography and Photonics" RAS; ⁵Université du Littoral Côte d'Opale; ILIT RAS-Branch of the FSRC "Crystallography and Photonics" RAS

3:00 PM Break

3:30 PM Invited

Domain Walls in Ferroelectrics: *Sukriti Mantri*¹; John Daniels¹; ¹University of New South Wales

4:00 PM Invited

Relaxor Characteristics and Electromechanical Response under High Field for Sodium BismuthTtitanate-based Ceramics: *Shuaishuai Bian*¹; Zhenxing Yue¹; ¹Tsinghua University

4:30 PM Concluding Comments

ARTIFICIAL INTELLIGENCE

Materials Informatics for Images and Multidimensional Datasets — Session II

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division

Program Organizers: Amanda Krause, University of Florida; Alp Sehirlioglu, Case Western Reserve University; Daniel Ruscitto, General Electric

Wednesday PM | October 20, 2021 A124 | Greater Columbus Convention Center

Session Chairs: Amanda Krause, University of Florida; Kimberly Gliebe, Case Western Reserve University

2:00 PM

Characterization of Additively Manufactured ZrB2-SiC Ultra High Temperature Ceramics via X-ray Microtomography: Pratish Rao¹; Jonghyun Park¹; Jeremy Watts¹; William Fahrenholtz¹; Gregory Hilmas¹; David Lipke¹; ¹Missouri University of Science and Technology

2:20 PM

Computational or Experimental? Interpreting X-ray Absorption and Diffraction Contrast for Massive Non-destructive 3D Grain Mapping of Metals in Laboratory CT: Andy Holwell¹; Hrishikesh Bale²; ¹Carl Zeiss Microscopy Ltd.; ²Carl Zeiss Microscopy Inc.

CERAMIC AND GLASS MATERIALS

Preceramic Polymers; Synthesis, Processing, Modeling, and Derived Ceramics — Preceramic Polymers and Polymer Derived Ceramics II

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Matthew Dickerson, Air Force Research Laboratory; Gurpreet Singh, Kansas State University; Paolo Colombo, University of Padova; Günter Motz, Universität Bayreuth

Wednesday PM | October 20, 2021 B230 | Greater Columbus Convention Center

Session Chair: Gurpreet Singh, Kansas State University

2:00 PM

Effect of Pendant Groups on the Mass Yield, Density and Process Modeling of Polycarbosilanes during Pyrolysis: Thomas Key¹; Garth Wilks²; Michael Cinibulk²; ¹UES Inc; ²Materials & Manufacturing Directorate, Air Force Research Laboratory, RXCC

2:20 PM Invited

Atomistic Simulations of Polymer Pyrolysis: $Peter\ Kroll^1$; 1 University of Texas at Arlington

2:50 PM

Organics Matter: Common Features in Energetics of Polymer Derived Ceramics, Metal Organic Frameworks, and other Hybrid Materials: *Alexandra Navrotsky*¹; ¹Arizona State University

3:10 PM

Thermal and Rheological Properties of Preceramic Polymer Grafted Nanoparticles: Kara Martin¹; Ravichandran Kollarigowda²; Caitlyn Clarkson³; Christina Thompson⁴; Subramanian Ramakrishnan²; Matthew Dickerson⁵; ¹UES, Inc; ²FAMU-FSU College of Engineering; ³NRC Research Associateship Program; ⁴Southwest Ohio Council for Higher Education (SOCHE) Program; ⁵Air Force Research Lab

3:30 PM Break

3:50 PM Invited

Molecules, Polymers, and Rings: Preceramic Compounds for AsB Formation: Brandon Ackley¹; Rory Waterman²; ¹ARCTOS Technology Solutions; ²University of Vermont

FUNDAMENTALS AND CHARACTERIZATION

Processing—Microstructure—Property Relationships of Titanium and Titanium Alloys — Session II

Sponsored by: TMS Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Rongpei Shi, Lawrence Livermore National Laboratory; Michael Gram, Titanium Metals Corporation

Wednesday PM | October 20, 2021 B246 | Greater Columbus Convention Center

Session Chairs: Michael Gram, Titanium Metals Corporation; Yufeng Zheng, University of Nevada Reno

2:00 PM

Computational Polarized-Light Microscopy for Microtextured Regions Characterization in Titanium Alloys: Matthew Dahar¹; Sesh Tamirisakandala¹; Dan Satko²; Ayman Salem²; ¹Howmet Aerospace; ²Materials Resources, LLC

2:20 PM

Computational Polarized Light Microscopy for Orientation-based Quality Control: Daniel Satko¹; Thomas Carmody¹; Chasen Ranger¹; Sesh Tamirisakandala²; Matthew Dahar²; Ayman Salem¹; ¹MRL Materials Resources LLC; ²Howmet Aerospace

2:40 PM

Strain Energy Density Fatigue Assessment of Ti-6Al-4V for Plain and Notched Geometries

: *Jeremy Massie*¹; Casey Holycross²; Joy Gockel¹; ¹Wright State University; ²Air Force Research Laboratory

3:00 PM

Obtaining High Strength-ductility Combination inTlitanium by Microstructure and Texture Engineering through Multiaxial Planestrain Forging: Devesh Chouhan¹; Somjeet Biswas²; ¹Indian Institute of Technology KGP; ²IIT KGP

PROCESSING AND MANUFACTURING

Synthesis, Characterization, Modeling and Applications of Functional Porous Materials — Functional Porous Materials

Sponsored by: ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Lan Li, Boise State University; Winnie Wong-Ng, National Institute of Standards and Technology; Kevin Huang, University of South Carolina

Wednesday PM | October 20, 2021 A212 | Greater Columbus Convention Center

Session Chairs: Kevin Huang, University of South Carolina; Winnie Wong-Ng, National Institute of Standards and Technology (NIST)

2:00 PM Invited

Selected Pillared Cyanonickelate Based Metal Organic Frameworks (MOFs) for CO2 Capture Applications: Winnie Wong-Ng¹; Jeffrey Culp²; Yu-Sheng Chen³; Daniel Siderius¹; Eric Cockayne¹; Lan Li⁴; ¹National Institute of Standards and Technology; ²NETL; ³University of Chicago; ⁴Boise State University

2:30 PM Invited

Functional Applications of Porosity in Complex Crystals: Lawrence Cook¹; Greg Brewer¹; Winnie Wong-Ng²; Daniel Siderius²; ¹Catholic University of America; ²National Institute of Standards and Technology

3:00 PM Invited

Porous Organic Polymer-based Nanotraps for Water Purification: Shengqian Ma¹; ¹University of North Texas

3:30 PM Break

3:50 PM Invited

Recent Advances in High Temperature Multiphase Solid/Molten Carbonate Membranes for CO2 Capture and Conversion: *Kevin Huang*¹; ¹University of South Carolina

4:20 PM

Integrated Multi-characterization Approach to Understand Pore Size Distributions in Natural Porous Materials: V. V. Rohit Bukka¹; Pankaj Sarin¹; ¹Oklahoma State University

4:40 PM

Microporous Copper Spheres: Processing, Morphology, and Application: Braden Jones¹; Beck Boan¹; Mark Atwater¹; ¹Liberty University

Technical Meeting and Exhibition

October 17–20, 2021 | Columbus, Ohio

POSTER SESSIONWITH PRESENTERS

The poster sessions are divided into 3 separate presentation times and grouped by topic area. Poster presenters should stand by their poster during their designated presentation time.

POSTER SESSION I

Tuesday, October 19 11:00 a.m. to 12:00 p.m.

- Ceramic and Glass Materials
- Electronic and Magnetic Materials
- Fundamentals and Characterization
- Nanomaterials

POSTER SESSION II

Tuesday, October 19 12:00 p.m. to 1:00 p.m.

- Biomaterials
- Energy
- Materials-Environment Interactions
- Processing and Manufacturing

POSTER SESSION III

Tuesday, October 19 4:45 p.m. to 5:45 p.m.

- Additive Manufacturing
- Artificial Intelligence
- Iron and Steel (Ferrous Alloys)
- Modeling

STUDENT EVENTS

2021 Undergraduate Student Poster Contest — 2021 Undergraduate Student Poster Contest

Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

Effect of Carbon Stoichiometry on the Heat of Formation of Hafnium Carbides: Amelia Martinez¹; ¹Missouri University of Science and Technology

Effect of Modifier Cation Size on the Bulk Structure and Nickel Speciation in Alkali Borosilicate Glasses: Lucas Greiner¹; Brian Topper¹; Randall Youngman²; Doris Möncke¹; ¹Alfred University; ²Corning Inc.

Enhanced Mechanical Properties in a 4140 Steel by "In-House" Intensive Quench: Larha Fernanda Vela¹; Jose Mariano Flores Herrera¹; Simón de la Rosa de la Cruz¹; Debanhi Ruvalcaba Quintero¹; Abraham Escalona Gomez¹; Jose Ivan López²; Moises Hinojosa Rivera¹; Universidad Autónoma de Nuevo León; ²Metalsa

Experiential Study on Critical Stress Intensity Factor of Carbon Nanotube Filled Epoxy: Lisa Zhou; Yu Zhang¹; Maobing Tu¹; ¹University of Cincinnati

Exploring the Liquid Phase Exfoliation of Two-Dimensional Bilayered Vanadium Oxide in Aqueous Media for Li ion Batteries: Raymond Zhang¹; Timofey Averianov¹; Ekaterina Pomerantseva¹; ¹Drexel University

High Temperature Mechanical Properties of TiB₂-WC-SiC Materials: *Elizabeth Sayre*¹; ¹Missouri University of Science and Technology

Investigation of Embedded Metallic Components on 3D Printed Ceramic Structures: *Victoria Adams*¹; Eleanore Rogenski¹; Bhargavi Mummareddy¹; Eric MacDonald²; Pedro Cortes¹; ¹Youngstown State University; ²University of Texas at El Pasco

Machine Learning Approaches to Predict Properties from Microstructure Images in Ceramic-Metal Composites: Hugh Smith¹; William Huddleston¹; Laura Bruckman¹; Alp Sehirlioglu¹; ¹Case Western Reserve University

Mechanical Behavior of Automotive Structural Steels in the Vicinity of the Ductile-brittle Transition: Lesly Susana Briano Murillo¹; Moises Hinojosa Rivera¹; ¹Universidad Autonoma de Nuevo León

Perovskite Film Formation for Solar Cell Absorbers: Effects of Substrate Modification: Mirra Rasmussen; Kyle Crowley¹; Ina Martin¹; ¹Case Western Reserve University

Pressure Optimization of Fast-Moving Silicon MEMS Micromirrors: *Adam Eichhorn*¹; Andrew Oliver²; ¹Iowa State University; ²Montana State University

Processing and Properties of (Ta, Nb, Hf, Ti)C Reinforced with Carbon Fiber: Nathan Gillespie

Rheological Characterization of Highly Loaded Alumina-Polymer Suspension for Thermal Paste 3D Printing: Pattiya Pibulchinda¹; Caitlin Adams¹; Kendra Erk¹; ¹Purdue University School of Materials Engineering

The Dynamic Performance of Wearable Sensors with Flexible Silver Ink: Gina Morrison¹; Charles Dwyer¹; Gonzalo Carrillo²; Pedro Cortes¹; Eric MacDonald³; ¹Youngstown State University; ²Centro de Investigación Científica de Yucatán; ³Univerity of Texas at El Paso

Thermal Analysis of Sodalite-immobilized Iodine-129 Caustic Scrubber Slurry: John Bussey¹; David Bollinger¹; Jessica Erickson¹; Natalie Smith-Gray¹; John McCloy¹; ¹Washington State University

ZrB2 Aqueous Slurry Development for DIW Additive Manufacturing: *Elizabeth Malek*¹; Connor Wyckoff¹; James Kemp²; William Costakis²; Benjamin Lam²; Lisa Rueschhoff²; ¹Wright State University; ²Air Force Research Lab

MATERIALS-ENVIRONMENT INTERACTIONS

Advances in Dielectric Materials and Electronic Devices — Poster Session

Sponsored by: ACerS Electronics Division

Program Organizers: Amar Bhalla, University of Texas; Ruyan Guo, University of Texas at San Antonio; Rick Ubic, Boise State University; Matjaž Spreitzer, Jožef Stefan Institute

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-11: Electric and Dielectric Characterization of [Cu, 2Ta] Dipole Substituted BaTiO₃ Ceramics: Noah Smith¹; Trisha Whaley¹; Victoria Pellegrino¹; Kaijie Ning¹; Holly Shulman¹; Walter Schulze¹; Steven Tidrow¹; ¹Alfred University

P1-14: Nanoscale Dipole Engineered IY, Tal BaTiO₃ Ceramics For Relaxor-like Ferroelectrics: *Victoria Pellegrino*¹; Trisha Whaley¹; Noah Smith¹; Kaijie Ning¹; Holly Shulman¹; Walter Schulze¹; Steven Tidrow¹; ¹Alfred University

P1-15: Novel Dipole-pair [Zn, W] Substituted BaTiO₃ Ceramic Relaxor: *Trisha Whaley*¹; Noah Smith¹; Victoria Pellegrino¹; Kaijie Ning¹; Holly Shulman¹; Walter Schulze¹; Steven Tidrow¹; ¹Alfred University

P1-16: Observations from Testing Dielectric Elastomers in Uniaxial Tension: Carolyn Haase¹; Hector Medina¹; ¹Liberty University

CERAMIC AND GLASS MATERIALS

Ceramic Matrix Composites — Poster Session

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

Session Chair: Narottam Bansal, NASA Glenn Research Center

P1-1: High Performance Oxide-Oxide CMCs: $Logan \ Johnson^1$; 1 Applied Thin Films, Inc.

CERAMIC AND GLASS MATERIALS

Ceramics and Glasses Modeling by Simulations and Machine Learning — Poster Session

Sponsored by: ACerS Glass & Optical Materials Division

Program Organizers: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas at Arlington; N. M. Anoop Krishnan, Indian Institute of Technology Delhi

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-3: Molecular Dynamic Characteristic Temperatures for Predicting Metallic Glass Forming Ability: Lane Schultz¹; Dane Morgan¹; Izabela Szlufarska¹; Benjamin Afflerbach¹; ¹University of Wisconsin-Madison

NANOMATERIALS

Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — Poster Session

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Polytechnic Institute and State University; Edward Gorzkowski, Naval Research Laboratory; Jian Shi, Rensselear Polytechnich University; Michael Naguib, Tulane University; Sanjay Mathur, University of Cologne

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-31: Layered Metal Monochalcogenides as Electrodes for Electrochemical Energy Storage Applications: Shakir Bin Mujib¹; Gurpreet Singh¹; ¹Kansas State University

P1-32: Low Temperature Synthesis of Solvothermally Grown Ga2O3 Thin Films on FTO Substrates Enabling Various Functional Applications: Siddhartha Suman¹; Mukurala Nagaraju¹; Lokanath Mohapatra¹; Aditya Bhardwaj¹; Ajay Kushwaha¹; ¹Indian Institute of Technology

FUNDAMENTALS AND CHARACTERIZATION

Deformation-induced Phase Transformations — Poster Session

Program Organizers: Yangyang Zhao, Purdue University; Jonah Klemm-Toole, Colorado School of Mines; Amy Clarke, Colorado School of Mines; Janelle Wharry, Purdue University

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-18: Bimetallic Billets for Magnesium-thermal Production of High Quality Sponge Titanium: *Valeriy Mishchenko*¹; Svitlana Mudra¹; Olha Bolsun¹; Sergy Sheyko¹; ¹Zaporizhzhia National University

P1-19: High-cut Steel Property Researches For Taps' Manufacture: *Anton Matiukhin*¹; Anna Ben¹; Vitalii Shyrokobokov¹; Sergey Sheyko¹; Elena Kulabneva¹; ¹"Zaporizhzhia Polytechnic" National University

FUNDAMENTALS AND CHARACTERIZATION

Grain Boundaries, Interfaces, and Surfaces in Ceramics: Fundamental Structure—Property— Performance Relationships — Poster Session

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division

Program Organizers: Rheinheimer Wolfgang, Forschungszentrum Jülich; Catherine Bishop, University of Canterbury; Shen Dillon, University of California, Irvine; Ming Tang, Rice University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology; Melissa Santala, Oregon State University

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-20: A Novel Probe for Grain Boundary Characterization on the Mesoscopic Scale: Lab-based Diffraction Contrast Tomography: Jun Sun¹; Jette Oddershede¹; Hrishikesh Bale²; Florian Bachmann¹; William Harris³; Erik Lauridsen¹; ¹Xnovo Technology; ²Carl Zeiss X-ray Microscopy; ³Carl Zeiss Microscopy, LLC

P1-21: The Effect of High Energy Diffraction Microscopy (HEDM) and Laboratory Diffraction Contrast Tomography (LabDCT) Resolution on Measured Grain Growth Parameters in Strontium Titanate (SrTiO₃).: Vivekanand Muralikrishnan¹; Jette Oddershede²; He Liu³; Bryan Conry¹; Florian Bachmann²; Robert Suter³; Amanda Krause¹; ¹University of Florida; ²Xnovo Technology ApS; ³Carnegie Melon University

FUNDAMENTALS AND CHARACTERIZATION

Integration between Modeling and Experiments for Crystalline Metals: From Atomistic to Macroscopic Scales III — Poster Session

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Levente Balogh, Queen's University; Caizhi Zhou, University of South Carolina; Lei Cao, University of Nevada; Josh Kacher, Georgia Institute of Technology

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-22: Life Prediction of High Temperature Alloys Subject to Coupled Thermomechanical Fatigue-creep Condition: Abhilash Gulhane¹; Harshal Dhamade¹; Tejesh Dube¹; Jing Zhang¹; Indiana University – Purdue University Indianapolis

SPECIAL TOPICS

Late News Poster Session — Ceramic and Glass Materials

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-5: Oxidation Protection of AlN/BN via Al₁₈B₄O₃₃: Celia Chari¹; Katherine Faber¹; ¹California Institute of Technology

P1-6: Luminescence Thermometry – a Fad or a Challenge?: *Malgorzata Sójka*¹; Marcin Runowski²; Przemyslaw Wozny²; Luis Carlos³; Eugeniusz Zych¹; Stefan Lis²; ¹University of Wroclaw; ²Adam Mickiewicz University; ³University of Aveiro

P1-7: Preparation and Structural Evolution of Si(O)CN Fibers Prepared via Hand Spinning of a Modified Silazane Oligomer: Ellie Christman¹; Christel Gervais²; Gurpreet Singh³; Himanshu Jain¹; ¹Lehigh University; ²Sorbonne University; ³Kansas State University

SPECIAL TOPICS

Late News Poster Session — Electronic and Magnetic Materials

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-17: Hydrogen Induced Photodarkening of Cu-doped B-Ga2O3 Czochralski Single Crystals: Jani Jesenovec¹; Christopher Pansegrau¹; Cassandra Remple¹; Jesse Huso²; Matthew McCluskey¹; John McCloy¹; ¹Washington State University; ²Klar Scientific

SPECIAL TOPICS

Late News Poster Session — Fundamentals and Characterization

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-27: Polyurea Tensile Tests at High Strain Rates: Frederick Heim¹; Sidney Chocron¹; Arthur Nicholls¹; Lynsey Reese²; ¹Southwest Research Institute; ²US Navy NAVFAC

SPECIAL TOPICS

Late News Poster Session — Nanomaterials

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-34: Resilient SiOC/Epoxy Nanocomposites: *Tulsi Patel*¹; Robert Wheeler¹; Derek King¹; Andrew Sharits¹; Ryan Nielsen²; Pania Newell²; Lisa Rueschhoff¹; ¹Air Force Research Laboratory; ²University of Utah

P1-35: Spectroscopic Studies of Nd3+ Doped KY3F10 Nanoparticles: Sangeetha Balabhadra¹; Michael Reid¹; Jon-Paul Wells¹; ¹University of Canterbury

FUNDAMENTALS AND CHARACTERIZATION

Nucleation of Solid-State Phase Transformations — Poster Session

Sponsored by: TMS Phase Transformations Committee

Program Organizers: Eric Lass, University of Tennessee-Knoxville; Sophie Primig, University of New South Wales; Keith Knipling, Naval Research Laboratory

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-28: Structure Influenced Rapid Hydrogenation Using Metalacid Contacts on Crystallographically Oriented VO2 Thin Films: Komal Mulchandani¹; Ankit Soni²; Krushna Mavani³; ¹Indian Institute of Technology Indore, Rajeev Gandhi Govt. P. G. College, Mandsaur (M.P.); ²Indian Institute of Technology Delhi; ³Indian Institute of Technology Indore

CERAMIC AND GLASS MATERIALS

Phase Transformations in Ceramics: Science and Applications — Poster Session

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Scott Mccormack, University of California, Davis; Pankaj Sarin, Oklahoma State University; Sanjay V. Khare, University of Toledo; Waltraud Kriven, University of Illinois at Urbana-Champaign

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-8: Structure, Electronic and Optical Properties of Ternary Nitride Phases of MgSnN2: A First-principles Study: Bishal Dumre¹; Daniel Gall²; Sanjay Khare¹; ¹The University of Toledo; ²Rensselaer Polytechnic Institute

P1-9: Understanding the Effect of Aliovaent Doping on Phase Transformations and Thermo-physical Properties in RENbO₄: Daniel Lowry¹; Pankaj Sarin¹; ¹Oklahoma State University

FUNDAMENTALS AND CHARACTERIZATION

Processing—Microstructure—Property Relationships of Titanium and Titanium Alloys — Poster Session

Sponsored by: TMS Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Rongpei Shi, Lawrence Livermore National Laboratory; Michael Gram, Titanium Metals Corporation

11:00 AM to 12:00 PM Tuesday AM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P1-29: Hierarchical Twinning Microstructure in the Metastable ß Ti-24Nb-4Zr-8Sn Alloy: Wenrui Zhao¹; Dian Li¹; Yufeng Zheng¹; ¹University of Nevada, Reno

P1-30: Analysis of Temperature Factor Influence on the Nature of the Titanium Alloy Deformation during Extrusion: Anton Matiukhin¹; Anna Ben¹; Vitalii Shyrokobokov¹; Sergey Sheyko¹; Elena Kulabneva¹; ¹"Zaporizhzhia Polytechnic" National University

PROCESSING AND MANUFACTURING

13th Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing — Poster Session

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Surojit Gupta, University of North Dakota; Rajiv Asthana, University of Wisconsin; Hisayuki Suematsu, Nagaoka University of Technology; Mritunjay Singh, Ohio Aerospace Institute; Enrico Bernardo, University of Padova; Yiquan Wu, Alfred University; Zhengyi Fu, Wuhan University of Technology; Allen Apblett, Oklahoma State University; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P2-20: Biomass Derived SiO2: Different Waste Resources and Extraction Methods: Damandeep Kaur¹; O.P. Pandey¹; M.S. Reddy¹; ¹Thapar Institute of Engineering & Technology

P2-21: Effect of Steam Injection on Reduction of Dioxin Emission from the Commercial-scale Sintering Plant: Zhengyun Fan¹; Wen Pan¹; Shiqi Zhao¹; ¹Shougang Research Institute of Technology

P2-22: Metallurgical Quality Analysis of High Nb TiAl Alloy Cast Ingot Prepared by BaZrO3 Crucible: Xuexian Zhang¹; Guangyao Chen¹; Bao Hua Duan¹; Yuchen Yang¹; ¹Shanghai University

P2-23: Optimization of the Ratio of Air and Fuel in Ignition Chamber of Sintering Machine: Yapeng Zhang¹; Wen Pan¹; Jingjun Zhao²; Shaoguo Chen¹; Huaiying Ma¹; Zhixing Zhao¹; ¹Research Institute of Iron & Steel, Shougang Group Co., LTD Research Institute of Technology; ²Ironmaking Department, Shougang Jingtang United Iron & Steel Co.,Ltd

P2-24: Research on West Pilbara Fines (WPF) Utilization under Deep Bed Sintering: Wen Pan¹; Shaoguo Chen¹; Yapeng Zhang¹; ¹Research Institute of Iron & Steel, Shougang Group Co., LTD Research Institute of Technology

P2-25: Reform and Practice of Energy Saving and Consumption Reduction Technology of 500 t/d Beckenbach Annular Lime Kiln: Yapeng Zhang¹; Wen Pan²; Zhenping Miao¹; Shaoguo Chen²; Huaiying Ma²; Zhixing Zhao²; ¹Shougang Group; ²Research Institute of Iron & Steel, Shougang Group Co., LTD Research Institute of Technology

P2-26: Study on Application of King Ore Fines in Sintering Process of Shougang Jingtang Plant: Shaoguo Chen¹; Wen Pan¹; Yapeng Zhang¹; Xiaochen Zhang¹; Bin Ji¹; Zhixing Zhao¹; ¹Shougang Research Institute of Technology

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Coatings for Wear and Corrosion Protection — Poster Session

Program Organizers: Evelina Vogli, Lm Group Holdings Inc.; Virendra Singh, Schlumberger

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

Session Chair: Evelina Vogli, LM Group Holdings

P2-12: Increase of Wearproofness Steel Surface as a Result Mechanochemical Influence Polymethylmethacrylat: Volodymyr Tsyganov¹; ¹"Zaporizhzhia Polytechnic" National University

P2-13: Increased Efficiency Serfising Diffusion Metalization of Cast Iron and Steel Chemical Equipment Parts: Svetlana Kondrashova¹; Egor Saprykin¹; Valeriy Naumyk²; Sergey Sheyko³; ¹Berdyansk Mechanical Engineering College of National University "Zaporizhzhia Polytechnic"; ²NU "Zaporizhzhya Polytechnic"; ³Zaporizhzhia National University

P2-14: Production Aluminized Alloyed Coatings for Protection Against Wear and Corrosion: *Borys Sereda*¹; Dmytro Sereda¹; Irina Kruglyak¹; Dneprovsky State Technical University

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Materials for Harsh Environments — Poster Session

Sponsored by: ACerS Electronics Division

Program Organizers: Navin Manjooran, Solve Technology and Research, Inc.: Gary Pickrell, Virginia Tech

Research, Inc.; Gary Pickrell, Virginia Tech

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P2-16: Development of Porous Silicon Nitride for Hypersonic RF Window Applications: Averyonna Kimery¹; ¹Purdue University

PROCESSING AND MANUFACTURING

Advances in Surface Engineering — Poster Session

Sponsored by: TMS Surface Engineering Committee

Program Organizers: Rajeswaran Radhakrishnan, Faraday Technology Inc; Brian Skinn, Faraday Technology, Inc.; Timothy Hall, Faraday Technology Inc; Michael Roach, University of Mississippi Medical Center; Sandip Harimkar, Oklahoma State University; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

Session Chair: Rajeswaran Radhakrishnan, Faraday Technology Inc

P2-27: Novel Rosette-like Formations on Ti Surfaces with Nanosize "Petal" Features: Hector Medina¹; ¹Liberty University

MATERIALS-ENVIRONMENT INTERACTIONS

Computation Assisted Materials Development for Improved Corrosion Resistance — Poster Session

Program Organizers: Rishi Pillai, Oak Ridge National Laboratory; Laurence Marks, Northwestern University

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P2-17: Development of Rhenium Free Heat-resistant Nickel Alloy for the Cast Blades Production by the Method of Directional Crystallization: Evgeniy Milonin¹; Konstantin Balushok¹; Pavel Malinovskiy¹; Valeriy Naumyk²; Vadim Shalomeev²; Sergey Sheyko³; ¹JSC «Motor Sich»; ²NU "Zaporizhzhya Polytechnic"; ³Zaporizhzhia National University

SPECIAL TOPICS

Late News Poster Session — Biomaterials

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P2-2: Effect of Copyrolysis on the Composition of Soursop (Annona Muricata) and Mango (Mangifera Indica) Seeds Bio-oil: Esther Ikhuoria¹; Joshua Onaifo¹; ¹University of Benin

SPECIAL TOPICS

Late News Poster Session — Energy

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P2-9: Computational Fluid Dynamics Modeling of Enhanced Convective Heat Transfer Using Twisted Tape Insert: Kshitija Kshitija¹; Tejesh Dube¹; Jian Zhang¹; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis

P2-10: Correlation between Shear Strength and PU Foam Density with Respect to Aging Time in District Heating Pipe: Hyung-Gyu Kim¹; Jaehoon Park¹; Jooyong Kim²; Hae-Yong Lee²; Jonghun Yoon¹; ¹Hanyang University; ²Korea District Heating Corporation (KDHC)/Frontier Research & Training Institute

SPECIAL TOPICS

Late News Poster Session — Processing and Manufacturing

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P2-29: Porous Metal Micro-pillars by Thermomechanical Molding: Shweta Jagdale¹; Golden Kumar¹; ¹University of Texas at Dallas

BIOMATERIALS

Next Generation Biomaterials — Poster Session

Sponsored by: ACerS Bioceramics Division, TMS Biomaterials Committee

Program Organizers: Roger Narayan, University of North Carolina; Min Wang, University of Hong Kong; Shawn Allan, Lithoz America LLC

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P2-3: Stretchable Ion Responsive Hydrogel with Controlled Response: Abhishek Pachauri¹; Jeff Bates¹; ¹University of Utah

P2-4: A Skin Testing Diagnostic Device: *Anthony Annerino*¹; Pelagia-Iren Gouma¹; ¹The Ohio State University

P2-6: Non-clinical Method For Diagnosing Cystic Fibrosis: Cassidy Holdeman¹; ¹University of Utah

BIOMATERIALS

Porous Materials for Biomedical Applications — Poster Session

Sponsored by: ACerS Bioceramics Division

Program Organizers: Usman Liaqat, National University of Sciences and Technology; Chuanbin Mao, University of Oklahoma; Mingying Yang, Zhejiang University

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P2-7: 3D Printing Seamless Hydrogels for In-vivo Pressure Sensing Devices: Ashwin Velraj¹; Jeffrey Bates¹; ¹University of Utah

P2-8: In vitro Investigation and Characterization of Resorption and Degradation Behavior of X-Ca-alginate Aerogels for Tissue Scaffold Applications: Martina Rodriguez Sala¹; Grigorios Raptopoulos²; Patrina Paraskevopoulou²; Firouzeh Sabri¹; ¹The University of Memphis; ²National and Kapodistrian University of Athens

PROCESSING AND MANUFACTURING

Synthesis, Characterization, Modeling and Applications of Functional Porous Materials — Poster Session

Sponsored by: ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Lan Li, Boise State University; Winnie Wong-Ng, National Institute of Standards and Technology; Kevin Huang, University of South Carolina

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

Session Chair: Lan Li, Boise State University

P2-30: ScSZ-MC Dual-phase Tubular Membrane for Pre-combustion CO2 Capture: Shichen Sun¹; Kevin Huang¹; ¹University of South Carolina

P2-31: Geopolymer Adsorbents for Harvesting N and P from Poultry Litter: Gizem Topal¹; Pankaj Sarin¹; V.V. Rohit Bukka¹; ¹Oklahoma State University

MATERIALS-ENVIRONMENT INTERACTIONS

Thermodynamics of Materials in Extreme Environments — Poster Session

Sponsored by: ACerS Basic Science Division, ACerS Energy Materials and Systems Division

Program Organizers: Xiaofeng Guo, Washington State University; Kristina Lilova, Arizona State University; Kyle Brinkman, Clemson University; Alexandra Navrotsky, Arizona State University; Jake Amoroso, Savannah River National Laboratory; Xingbo Liu, West Virginia University; Gustavo Costa, NASA Glenn Research Center

12:00 PM to 1:00 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

Session Chairs: Kristina Lilova, Arizona State University; Xiaofeng Guo, Washington State University

P2-19: Design of Ultra-high Temperature Ceramics for Oxidation Resistance: $Niquana S^1$; Elizabeth Opila Opila¹; ¹University of Virginia

ARTIFICIAL INTELLIGENCE

Accelerating Materials Science with Big Data and Machine Learning — Poster Session

Program Organizers: Huan Tran, Georgia Institute of Technology; Muratahan Aykol, Toyota Research Institute

4:45 PM to 5:45 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P3-18: Rashba Spin Splitting and Photocatalytic Properties of GeC-MSSe (M=Mo, W) Van Der Waals Heterostructures: Haleem Ud Din¹; ¹Abbottabad University of Science & Technology

P3-19: Thermo-mechanical Property Prediction of High-temperature Materials Using a Python Based Interface With Quantum Espresso: Joseph Derrick¹; Michael Golub¹; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis

ADDITIVE MANUFACTURING

Additive Manufacturing Modeling and Simulation: Microstructure, Mechanics, and Process — Poster Session

Sponsored by: TMS Computational Materials Science and Engineering Committee

Program Organizers: Jing Zhang, Indiana University – Purdue University Indianapolis; Brandon McWilliams, US Army Research Laboratory; Li Ma, Johns Hopkins University Applied Physics Laboratory; Yeongil Jung, Changwon National University

4:45 PM to 5:45 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

Session Chair: Jing Zhang, Indiana University - Purdue University Indianpolis

P3-1: Creep Modeling of 3D Printed Nickel Based Superalloy: *Harshal Dhamade*¹; Abhilash Gulhane¹; Tejesh Dube¹; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis

P3-2: Design A Syringe Pump Extruder Type 3D Bioprinter: *Haoyee Yeong*¹; Eli Kindomba¹; Bavly Shehata¹; Alyaa Idris¹; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis

P3-3: Finite Element Modeling of Coating Thickness Prediction in Electron Beam Physical Vapor Deposition Process: Anvesh Dhulipalla¹; Yafeng Li²; Sugrim Sagar¹; Jian Zhang¹; Xuehui Yang¹; Dan Koo¹; Hye-Yeong Park³; Yeon-Gil Jung³; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis; ²Tiangong University; ³Changwon National University

P3-4: Modeling Charpy Impact Property of 3D Printed 718 Nickel Alloys Using the SmootheFd Particle Hydrodynamics Method: Sugrim Sagar¹; Jian Zhang¹; Jing Zhang¹; Indiana University – Purdue University Indianapolis

P3-5: Reinforcement Learning Aided Simulations for Determining Process Parameters for Optimizing Microstructure in LPBF Additive Manufacturing Parts: *Junwon Seo*¹; Joseph Pauza¹; Anthony Rollett¹; ¹Carnegie Mellon University

P3-6: Student Design Project of Design a Mechanical Ventilator Prototype during the Pandemic: Francis Iloeje¹; Sunday Folorunso¹; Haoyee Yeong¹; Eli Kindomba¹; Yafeng Li²; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis; ²Tiangong University

P3-7: Virtual Reality Modules of 3D Printing Laboratories for Additive Manufacturing Education: Cooper Zuranski¹; Shambhuraj Wadghule¹; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis

ADDITIVE MANUFACTURING

Additive Manufacturing: Processing, Microstructure and Material Properties of Titanium-based Materials — Poster Session

Sponsored by: TMS Titanium Committee

Program Organizers: Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Peeyush Nandwana, Oak Ridge National Laboratory; Rongpei Shi, Lawrence Livermore National Laboratory

4:45 PM to 5:45 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P3-9: Characterization of Stresses as a Function of AM Processing Parameters in Commercially Pure Ti: Claire Adams¹; Kellen Traxel¹; Amit Bandyopadhyay¹; David Field¹; ¹Washington State University

IRON AND STEEL (FERROUS ALLOYS)

Advances in Metallic Coated Advanced Steels — Poster Session

Sponsored by: AIST: Metallurgy Processing Products and Applications Technology Committee , AIST: Galvanizing Technology Committee

Program Organizers: Joseph McDermid, McMaster University; Frank Goodwin, ILZRO

4:45 PM to 5:45 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

Session Chair: Frank Goodwin, International Zinc Association

P3-22: Reduction of the Internal and External Oxidation of the Charge during Galvanizing Under SHS Conditions: Borys Sereda¹; Dmytro Sereda¹; Irina Kruglyak¹; ¹Dneprovsky State Technical University

SPECIAL TOPICS

Late News Poster Session — Additive Manufacturing

4:45 PM to 5:45 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P3-10: Additively Manufactured 718 Ni Alloys with Oxide Nanoparticles: Benjamin Stegman¹; Xinghang Zhang¹; Haiyan Wang¹; Bo Yang¹; Zhongxia Shang¹; Jie Ding¹; Tianyi Sun¹; William Jarosinski¹; Jack Lopez¹; ¹Purdue University

P3-11: CALPHAD-based Alloy Design and Uncertainty Quantification for Additive Manufacturing: $Xin\ Wang^1$; Soumya Sridar 1 ; Wei Xiong 1 ; 1 University of Pittsburgh

P3-13: Effect of Heat Treatment on Microstructure and Corrosion Behavior of Additively Manufactured 7050 Aluminum Alloy: *Rupesh Rajendran*¹; Preet Singh¹; ¹Georgia Institute of Technology

SPECIAL TOPICS

Late News Poster Session — Iron and Steel (Ferrous Alloys)

4:45 PM to 5:45 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P3-26: Introducing Heusler Fe₂SiTi Intermetallic as a New Strengthening Precipitate for High Strength Low Alloy Steels: Rafael Rodriguez De Vecchis¹; Xin Wang¹; Soumya Sridar¹; Zhangwei Wang²; Wei Xiong¹; ¹University of Pittsburgh; ²Max-Planck-Institut für Eisenforschung GmbH

P3-27: Understanding the Load Response Behavior of Martensite, Bainite and Accompanied Retained Austenite in a High Carbon Bearing Steel: Mohanchand Paladugu¹; Daniel Foster²; Enrique Jimenez-melero²; Lee M. Rothleutner¹; R. Scott Hyde¹; ¹The Timken Company World Headquarters (WHQ), North Canton, OH 44720, USA; ²Materials Performance Centre, Department of Materials, The University of Manchester, UK

SPECIAL TOPICS

Late News Poster Session — Modeling

4:45 PM to 5:45 PM Tuesday PM | October 19, 2021 Exhibit Hall B | Greater Columbus Convention Center

P3-28: Fatigue Analysis of a Spring Coil Structure under Cyclic Loading Conditions: Sunday Folorunso¹; Jian Zhang¹; Tejesh Dube¹; Jing Zhang¹; Indiana University – Purdue University Indianapolis

P3-29: Finite Element Modeling of Sheet Metal Bending Process: Sunket Kulkarni¹; Tejesh Dube¹; Jian Zhang¹; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis

P3-30: Grain Size-texture Coupling in Crystal Plasticity Finite Element Modeling: Application to Magnesium Alloys: Aaditya Lakshmanan¹; Mohsen Andani¹; Veera Sundararaghavan¹; Amit Misra¹; John Allison¹; ¹University Of Michigan

P3-31: Reactive Phase Formation: Kinetics and Associated Microstructure Evolution: Connor McNamara¹; Helen Chan¹; *Jeffrey Rickman*¹; ¹Lehigh University

P3-32: Understanding Mechanical Behavior of Basketball Hoops Using Finite Element Modeling: Luc Rulinda¹; Jian Zhang¹; Tejesh Dube¹; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis

Technical Meeting and Exhibition

October 17–20, 2021 | Columbus, Ohio

ON-DEMANDPRESENTATIONS

The following are details to help prepare for the program if you are presenting in the virtual on-demand option:

- The on-demand presentations are scheduled to be available beginning Friday, October 22 starting at 8:00 a.m. EDT.
- The presentations will be available to view through December 31, 2021.
- Presentations will be pre-recorded.
- All presentations and events will be scheduled in Eastern Daylight Time (UTC-4:00).

PROCESSING AND MANUFACTURING

13th Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing — On-Demand Novel Approaches to Sustainable Manufacturing

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Surojit Gupta, University of North Dakota; Rajiv Asthana, University of Wisconsin; Hisayuki Suematsu, Nagaoka University of Technology; Mritunjay Singh, Ohio Aerospace Institute; Enrico Bernardo, University of Padova; Yiquan Wu, Alfred University; Zhengyi Fu, Wuhan University of Technology; Allen Apblett, Oklahoma State University; Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology

Friday AM | October 22, 2021 On-Demand Room 12 | MS&T On Demand

Invited

Sustainable Processing of Composite Materials: Daniel Kopp¹; Kevin Blinn²; Jun Wang²; Daniel McMullen²; Surojit Gupta³; Richard Riman¹; ¹Rutgers University; ²RRTC Inc.; ³University of North Dakota

Invited

Gelation-freezing Derived Mullite Thermal Insulators Prepared by Reaction Sintering with Various Types of Alumina Nanofibers and Silica: Manabu Fukushima¹; ¹National Institute of Advanced Industrial Science and Technology

Invited

Addressing Advanced Sustainability with Materials Selection: Luca Masi¹; Mauricio Dwek¹; ¹Ansys Inc.

Invited

Sustainable Synthesis of Non-oxide Ceramics in Air: Jesus Gonzalez-Julian¹; Apurv Dash¹; Sylvain Badie¹; Robert Vassen¹; Olivier Guillon¹; ¹Forschungszentrum Jülich

Invited

Preparation of Tin Nanosized Powder by Pulsed Wire Discharge: Hisayuki Suematsu¹; Souma Yamamoto¹; Thi Do¹; Tadachika Nakayama¹; ¹Nagaoka University of Technology

Invited

Room-temperature Densification of MgO Ceramics with Nitride Phosphor Particles: *Junichi Tatami*¹; Emi Takahashi¹; Takuma Takahashi¹; ¹Yokohama National University

Invited

Smart Powder Processing for Sustainable Society: Makio Naito¹; Takahiro Kozawa¹; Akira Kondo¹; ¹Osaka University

Invited

Polymer Derived Coatings for Corrosion Protection of Steels: $Kathy Lu^1$, "Virginia Polytechnic Institute and State University

Invited

First-principles Studies of Adsorption and Diffusion of Metal on a-Al2O3 for Advanced Manufacturing Applications: Austin Biaggne¹; Lan Li; ¹Boise State University

Invited

The Printability of Ternary Metal Boride (MAB) Materials Using Laser Powder Bed Fusion: Samuel Hocker¹; Mackenzie Geigle²; Taylor Riedl²; Christian Forsberg²; Maharshi Dey²; Karen Taminger¹; Lopamudra Das³; Surojit Gupta²; Valerie Wiesner¹; Daniel Trieff²; ¹NASA Langley Research Center; ²University of North Dakota; ³National Institute of Aerospace

High Temperature Interaction of IN718 on Heated Buildplate: *Nicolas Tan*¹; ¹University of Arizona

Preparation of BaZrO3/Y2O3 Composite Refractory and Study on Its Interface Reaction with Ti2Ni Alloy: Xiao Hou¹; Feihai Yu¹; Yucheng Yang¹; Guangyao Chen¹; ¹Shanghai University

Study on the Interfacial Reaction between BaZrO3 Refractories and Zr Amorphous Alloys: Feihai Yu¹; Guangyao Chen¹; Xiao Hou¹; Yuchen Yang¹; Chonghe Li¹; ¹Shanghai University

STUDENT EVENTS

2021 Undergraduate Student Poster Contest — On-Demand Poster Presentations

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Composition and Physicochemical Properties of Typical Waste Cooking Oil: Qingyao Yu¹; Peng Li¹; Jing Wu²; Xiaofeng Cheng³; Gui-xia Fan¹; ¹Zhengzhou University; ²Huaibei Blasting Technology Research Institute Co.,Ltd.,CCTEG; ³Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS

Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage: *Ruixuan Jiang*¹; Mingsheng Qin²; ¹Wuhan University of Technology; ²Huazhong University of Science and Technology

Mechanical Property Assessment of Silicon Carbide Fiber-reinforced Epoxy-matrix Composites: *Dylan Kruep*¹; Shakir Bin Mujib¹; Gurpreet Singh¹; ¹Kansas State University

Optimal Integration of TiO₂-Coated Gold Nanostars for Enhancement of Photocatalytic Water Reduction: Sanjna Sukumaran¹; Kaleigh Ryan¹; Laura Fabris¹; ¹Rutgers University

The Mechanisms of Micro-fine Titanaugite Enter to Ilmenite in the Flotation and Depression Behavior of Sodium Silicate: Gui-xia Fan¹; Xiaofeng Cheng²; Jing Wu³; *Peng Li*¹; ¹Zhengzhou University; ²Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS; ³Huaibei Blasting Technology Research Institute Co.,Ltd.,CCTEG

ARTIFICIAL INTELLIGENCE

Accelerating Materials Science with Big Data and Machine Learning — On-Demand Oral Presentations

Program Organizers: Huan Tran, Georgia Institute of Technology; Muratahan Aykol, Toyota Research Institute

Friday AM | October 22, 2021 On-Demand Room 2 | MS&T On Demand

Invited

Bridging the Gap between Literature Data Extraction and Domain Specific Materials Informatics: Elsa Olivetti²; ¹Massachusetts Institute of Technology

Invited

There is No Time for Science as Usual: Alan Aspuru-Guzik¹; ¹University of Toronto

Invited

Designing Alloys with Process-mapping AI Pre-trained on Empirical Knowledge: Vyacheslav Romanov¹; ¹National Energy Technology Laboratory

Invited

Accelerating Discovery in Computational Materials Science Using CAMD: Joseph Montoya¹; ¹Toyota Research Institute

Scalable Gaussian Processes for Predicting the Optical, Physical, Thermal, and Mechanical Properties of Inorganic Glasses Using Compositions for Large Datasets: Suresh Bishnoi¹; Ravinder Ravinder¹; Hargun Singh Grover¹; Hariprasad Kodamana¹; N. M. Anoop Krishnan¹; Indian Institute of Technology, Delhi

Deep Learning-enabled Prediction of Mechanical Properties of Metallic Microlattice Structures Using Uniaxial Compression Videos: Akanksh Shetty¹; Chunshan Hu¹; Mohammad Sadeq Saleh¹; Jack Beuth¹; Rahul Panat¹; Amir Farimani¹; ¹Carnegie Mellon University

Molecular Dynamics Simulation Using Lagrangian Neural Networks: *Ravinder Bhattoo*¹; N. M. Anoop Krishnan¹; ¹Indian Institute of Technology Delhi

Multi-target Prediction of Concrete Engineering Properties Based on a Single Deep Learning Model: Yu Song¹; Gaurav Sant¹; Mathieu Bauchy¹; ¹University of California, Los Angeles

Semantic Segmentation of Plasma Transferred Arc Additively Manufactured NiBSi-WC Optical Microscopy Images Using a Convolutional Neural Network: Dylan Rose¹; Justin Forth²; Tonya Wolfe³; Ahmed Qureshi¹; Hani Henein¹; ¹University of Alberta; ²Consultant; ³Red Deer College

Machine Learning in 2D Materials: Benchmarking Crystal Graph Based Convolutional Neural Network (CGCNN) for Open Databases: Shreeja Das¹; Raj Kishore¹; Mihir Sahoo¹; S Swayamjyoti¹; Anthony Yoshimura²; Nikhil Koratkar³; Saroj Nayak¹; Kisor Sahu¹; ¹Indian Institute of Technology Bhubaneswar; ²Livermore National Laboratory; ³Rensselaer Polytechnic Institute

Predicting Glass Behaviour from Optical Microscopy Images Using Interpretable Machine Learning: Ankur Agrawal¹; Mohd Zaki¹; Ravinder Bhattoo¹; N. M. Anoop Krishnan¹; ¹Indian Institute of Technology Delhi

ARTIFICIAL INTELLIGENCE

Accelerating Materials Science with Big Data and Machine Learning — On-Demand Poster Presentations

Program Organizers: Huan Tran, Georgia Institute of Technology; Muratahan Aykol, Toyota Research Institute

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Developing Physics-based Descriptors for Property Prediction in Oxide Glasses: *Suresh Bishnoi*¹; Ravinder Ravinder¹; N. M. Anoop Krishnan¹; ¹Indian Institute of Technology, Delhi

Machine Learning to Predict Mechanical Properties of Steel Alloys Based on Chemical Composition and Heat Treatment Process: *Yutao Wang*¹; ¹WPI

Topology Optimization for Two-phase Composites Using Active Learning Based Gaussian Process Regression: *Tanu Pittie*¹; Suresh Bishnoi¹; N. M. Anoop Krishnan¹; ¹Indian Institute of Technology (IIT), Delhi

ADDITIVE MANUFACTURING

Additive Manufacturing Modeling and Simulation: Microstructure, Mechanics, and Process — AM Modeling - On-Demand Oral Presentations

Sponsored by: TMS Computational Materials Science and Engineering Committee

Program Organizers: Jing Zhang, Indiana University – Purdue University Indianapolis; Brandon McWilliams, US Army Research Laboratory; Li Ma, Johns Hopkins University Applied Physics Laboratory; Yeongil Jung, Changwon National University

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

Session Chair: Jing Zhang, Indiana University - Purdue University Indianpolis

Grain Refinement and Mechanical Properties for AISI304 Stainless Steel Single-tracks by Laser Melting Deposition: Mathematical Modelling versus Experimental Results: Muhammad Arif Mahmood¹; Andrei C. Popescu¹; Mihai Oane¹; Diana Chioibasu¹; Gianina Popescu-Pelin¹; Carmen Ristoscu¹; Ion N. Mihailescu¹; National Institute for Laser, Plasma and Radiation Physics (INFLPR)

Numerical Simulations of Fracture Tests of Uncharged and Hydrogen-charged Bend Specimens of Additively Manufactured 304 Stainless Steel Using Nodal Release Method and Cohesive Zone Model: Shengjia Wu¹; Shin-Jang Sung¹; Jwo Pan¹; Paul Korinko²; ¹University of Michigan; ²Savannah River National Laboratory

Ductile Fracture of Ti-6Al-4V Made by Powder Bed Fusion Additive Manufacturing: *Allison Beese*¹; Alexander Wilson-Heid¹; ¹Pennsylvania State University

Thermal History of LPBF Components Towards Predicting As-built Material Properties: Martin Verhülsdonk¹; Simon Vervoort¹; Mustafa Megahed²; ¹Fraunhofer Institute for Laser Technology ILT; ²ESI Group

Defect Prediction thru Part-scale Simulation: Shawn Hinnebusch¹; Florian Dugast¹; Alaa Olleak¹; Albert To¹; ¹University of Pittsburgh

Inherent Strain Method for Residual Stress Prediction in Ferritic-austenitic Steel Structure Fabricated by Directed Energy Deposition: *Zhengtong Shan*¹; Minh Tien Tran¹; Huai Wang²; Sun-Kwang Hwang³; Dong-Kyu Kim¹; ¹University of Ulsan; ²Chinese Academy of Sciences; ³Korea Institute of Industrial Technology

Deep Learning Prediction of Stress Fields in Additively Manufactured Metals with Intricate Defect Networks: Brendan Croom¹; Michael Berkson¹; Bobby Mueller¹; Michael Presley¹; Steven Storck¹; ¹JHU Applied Physics Laboratory

Process Maps and Models For Highly Filled Polymers In Powder Fused Filament Fabrication (PF3) 3D Printing: Kameswara Pavan Ajjarapu¹; Roshan Mishra¹; Ji-Hae Kim¹; Kunal Kate¹; ¹University of Louisville

Modeling Collapse Behavior in Large-scale Thermoset Additive Manufacturing: Stian Romberg¹; Chris Hershey²; John Lindahl²; Abrian Abir³; Michael DeVinney⁴; Chad Duty¹; Vlastimil Kunc²; Brett Compton³; ¹University of Tennessee, Knoxville; Oak Ridge National Laboratory; ²Oak Ridge National Laboratory; ³University of Tennessee, Knoxville; ⁴

Interfacial Properties in 3D Printed Stainless Steel Coated with Epoxy: *Xuehui Yang*¹; Sugrim Sagar¹; Tejesh Dube¹; Alan Jones¹; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis

Mechanical Properties of Ceramic Core with SiO₂-Na₂O-Al₂O₃ Ternary Binder System: Hyunhee Choi¹; Bong-Gu Kim²; Eun-Hee Kim¹; Junseong Kim²; Seong-Hwa Jeong²; Seung-Cheol Yang²; Yeon-Gil Jung²; ¹Changwon National University; ²Department of Materials Convergence and System Engineering of Changwon National University

Preparation of Ceramic Green Body with Uniform Density through Living Properties of Cycloaliphatic Epoxy Resins in DLP(Digital Light Processing) 3D Printing of Ceramics: Hye-Yeong Park¹; SeungHwa Jeong²; Haeun Kim²; DongHyun Kim²; Janghyeok Pyeon²; SeungCheol Yang¹; Yeon-Gil Jung¹; ¹Changwon National University; ²Department of Materials Convergence and System Engineering of Changwon National University

ADDITIVE MANUFACTURING

Additive Manufacturing Modeling and Simulation: Microstructure, Mechanics, and Process — AM Modeling - On-Demand Poster Presentations

Sponsored by: TMS Computational Materials Science and Engineering Committee

Program Organizers: Jing Zhang, Indiana University – Purdue University Indianapolis; Brandon McWilliams, US Army Research Laboratory; Li Ma, Johns Hopkins University Applied Physics Laboratory; Yeongil Jung, Changwon National University

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Model the Initiation of Hot Cracking during Laser Welding of Al6061: Guannan Tang¹; Anthony Rollett¹; ¹Carnegie Mellon University

ADDITIVE MANUFACTURING

Additive Manufacturing of Ceramic-based Materials: Process Development, Materials, Process Optimization and Applications — On-Demand Oral Presentations

Sponsored by: ACerS Engineering Ceramics Division, ACerS Basic Science Division, ACerS Manufacturing Division

Program Organizers: Xuan Song, University of Iowa; Lei Chen, University of Michigan-Dearborn; Xiangyang Dong, Missouri University of Science and Technology; Yiquan Wu, Alfred University; Paolo Colombo, University of Padova; Rajendra Bordia, Clemson University; Long-Qing Chen, Pennsylvania State University

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

Session Chair: Xuan Song, University of Iowa

Invited

Towards Direct Additive Manufacturing of Ceramics by Selective Laser Flash Sintering: Desiderio Kovar¹; ¹University of Texas at Austin

Mesoscale Modeling of Sintering Kinetics in Direct Ink Write Additive Manufacturing: Fadi Abdeljawad¹; ¹Clemson University

Structure and High Temperature Mechanics of Binder Jet 3D Printed Ceramic Compacts Treated with Reactive Precursors: Lynnora Grant¹; C. Higgs III¹; Zachary Cordero²; ¹Rice University; ²Massachusetts Institute of Technology

Direct-writing by Micro Cold Spray of Yttria (Y2O3) Films: *Aidan Moyers*¹; Michael Becker¹; Desiderio Kovar¹; ¹The University of Texas at Austin

Mechanical Properties and Ionic Conductivity of Li₂O-Al₂O₃-TiO₂-P₂O₅ Prepared Using Laser Powder Bed Fusion: *Katherine Acord*¹; Alexander Dupuy¹; Olivia Donaldson¹; Xin Wang¹; Timothy Rupert¹; James Wu²; Qian Chen³; Julie Schoenung¹; ¹University of California, Irvine; ²NASA Glenn Research Center; ³Jet Propulsion Laboratory

Improving Ceramic Additive Manufacturing via Machine Learningenabled Closed-Loop Control: Zhaolong Zhang¹; Richard Sisson¹; Jianyu Liang¹; Zhaotong Yang¹; ¹Worcester Polytechnic Institute

Binder-free Additive Manufacturing of Ceramics Using Hydrothermalassisted Jet Fusion: Fan Fei¹; Levi Kirby¹; Xuan Song¹; ¹University of Iowa

Effect of Particle Morphology and Green Part Density on Microstructure Evolution and Mechanical Properties of Sintered Alumina Fabricated via Ceramic Fused Filament Fabrication (CF3): Kameswara Pavan Ajjarapu¹; Kavish Sudan¹; Kunal Kate¹; ¹University of Louisville

3D Printed Ceramic Acoustic Liners for Aircraft Noise Reduction: David Nevarez-Saenz¹; Ted Adler¹; Wei Wei¹; Bhisham Sharma¹; ¹Wichita State University

Micro-cold Spray: Influence of SiC Nanoparticle Impact Angle on Deformation Behavior: Derek Davies¹; Michael Gammage²; Michael Becker¹; John Keto¹; Desiderio Kovar¹; ¹The University of Texas at Austin; ²CCDC DEVCOM Army Research Laboratory

ADDITIVE MANUFACTURING

Additive Manufacturing of Ceramic-based Materials: Process Development, Materials, Process Optimization and Applications — On-Demand Poster Presentations

Sponsored by: ACerS Engineering Ceramics Division, ACerS Basic Science Division, ACerS Manufacturing Division

Program Organizers: Xuan Song, University of Iowa; Lei Chen, University of Michigan-Dearborn; Xiangyang Dong, Missouri University of Science and Technology; Yiquan Wu, Alfred University; Paolo Colombo, University of Padova; Rajendra Bordia, Clemson University; Long-Qing Chen, Pennsylvania State University

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Properties of LiNbO3 Films Deposited by Micro-Cold Spray at Varying Angles of Impact: Stephen Bierschenk¹; Michael Becker¹; Susanne Lee²; Desiderio Kovar¹; ¹The University of Texas at Austin; ²L3Harris Technologies, Inc.

ADDITIVE MANUFACTURING

Additive Manufacturing of High and Ultra-High Temperature Ceramics and Composites: Processing, Characterization and Testing — On-Demand Oral Presentations

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Corson Cramer, Oak Ridge National Laboratory; Greg Hilmas, Missouri University of Science and Technology; Lisa Rueschhoff, Air Force Research Laboratory

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

Additive Manufacturing of Silicon Nitride Using a Slurry Approach: Beth Armstrong¹; Corson Cramer¹; Benjamin Lamm¹; Trevor Aguirre¹; David Mitchell¹; ¹Oak Ridge National Laboratory

Investigation of Oxidation Behavior of ZrB2-SiC Composites under Different Partial Pressures of Oxygen: Rubia Hassan¹; Rishabh Kundu²; Kantesh Blaani¹; ¹Indian Institute of Technology Kanpur; ²National Institute of Technology Rourkela

AM of UHTCs at LLNL: James Cahill¹; ¹Lawrence Livermore National Laboratory

Additive Manufacturing of Corrosion Resistant UHTC Materials for Chloride Salt-to-sCO2 Brayton Cycle Heat Exchangers: James Kelly¹; Jeffery Haslam¹; Lauren Finkenauer¹; Michael Ross¹; Pratanu Roy¹; Du Nguyen¹; Joshuah Stolaroff¹; ¹Lawrence Livermore National Laboratory

Additive Manufacturing of High-performance Advanced Ceramics by the Ceramic On-demand Extrusion (CODE) Process: *Ming Leu*¹; ¹Missouri University of Science and Technology

Molten Chloride Salt Corrosion Testing of Ultra High Temperature Ceramics for High Temperature Heat Exchangers Fabricated by Additive Manufacturing Methods: Jeffery Haslam¹; James Kelly¹; Joshuah Stolaroff¹; Michael Ross¹; Stephen Raiman²; Bruce Pint³; Dino Sulemanovic³; ¹LLNL; ²Texas A&M University; ³Oak Ridge National Laboratory

Pathways to Additively Manufacture Ultra-high Temperature Ceramic Composites: James Kemp¹; Zlatomir Apostolov²; Brett Compton¹; Lisa Rueschhoff³; ¹The University of Tennessee, Knoxville; ²Air Force Research Laboratory; ³Air Force Research Laboratory

Deposition of UHTC Coatings on Refractory Substrates by Directed Energy Methods: Zlatomir Apostolov¹; Noam Eliaz²; Michael Cinibulk¹; ¹Air Force Research Laboratory; ²Tel Aviv University

Strategies for Printing Continuous Fibers and Post-processing for Ceramic Matrix Composites (CMCs): Corson Cramer¹; Vipin Kumar¹; Ryan Duncan¹; David Mitchell¹; Vlastimil Kunc¹; ¹Oak Ridge National Laboratory

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Equipment, Instrumentation and In-Situ Process Monitoring — On-Demand Oral Presentations

Program Organizers: Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Joy Gockel, Colorado School of Mines; Sneha Prabha Narra, Carnegie Mellon University

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

Defect Recognition and Improvement in Ti-6Al-4V Fabrication by Insitu Monitoring and Feedback System of Directed Energy Deposition LAMDA 200: Lingxiao Ouyang¹; Kenta Aoyagi¹; Yuji Imamiya²; Akihiko Chiba¹; ¹Tohoku University; ²Mitsubishi Heavy Industries Machine Tool Co., Ltd.

Plenoptic Imaging for In-situ PIV and Melt Pool Monitoring in Laser Directed Energy Deposition: James Haley¹; Thomas Feldhausen¹; Vincent Paquit¹; ¹Oak Ridge National Laboratory

Studying the Effect of Inert Gases on Thermal Behavior in Laser Powder Bed Fusion Using In Situ Monitoring and Similarity Analysis: Sujana Chandrasekar¹; Fred List²; Sabina Kumar¹; Keith Carver²; Jamie Coble¹; Vincent Paquit²; Sudarsanam Babu¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: Microstructure, Properties and Alloy Development — On-Demand Oral Presentations

Program Organizers: Prashanth Konda Gokuldoss, Tallinn University of Technology; Juergen Eckert, Erich Schmid Institute of Materials Science; Zhi Wang, South China University of Technology

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

Critical Crystallization Properties of an Industrial-Grade Zr-based Metallic Glass-Forming Alloy Used in Additive Manufacturing Measured with Fast Scanning Calorimetry: Danielle Kimmel¹; Juergen Schawe¹: ¹Mettler Toledo

Detection and Classification of Internal Defects from Surface Morphology Data of Additively Manufactured Parts: Yunwei Gui¹; Kenta Aoyagi¹; Huakang Bian¹; Akihiko Chiba¹; ¹Tohoku University

Cryogenic Mechanical Properties of CrCoNi Medium Entropy Alloy Produced by Selective Laser Melting with Hot Isostatic Pressing: *Tri Hoang Nguyen*¹; Minh Tien Tran¹; Kyung-Hwan Jung²; Ho Won Lee³; Sun-Kwang Hwang²; Dong-Kyu Kim¹; ¹University of Ulsan; ²Korea Institute of Industrial Technology; ³Korea Institute of Materials Science

Microstructural and Strength Evolution during Aging of an Additively Manufactured Al-Cu-Mn-Zr Alloy: Richard Michi¹; Kevin Sisco²; Sumit Bahl¹; Jonathan Poplawsky¹; Lawrence Allard¹; Ryan Dehoff¹; Alex Plotkowski¹; Amit Shyam¹; ¹Oak Ridge National Laboratory; ²University of Tennessee, Knoxville

Microstructure Optimization and Cracks Reduction in Cobalt Based Superalloys Processed by Directed Energy Deposition: *Thibaut Froeliger*¹; Louise Toualbi¹; Didier Locq¹; Edouard Chauvet²; Arnaud Ferrandez²; Rémy Dendievel³; ¹ONERA; ²Poly-Shape; ³Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP

Effect of Atomizing Gas on the Microstructure and Properties of Additively Manufactured 17-4 Precipitation Hardening Steel: Kaushalendra Singh¹; George Abott¹; Atieh Moridi¹; ¹Cornell University

Nonlinear Ultrasonic Methods for Nondestructive Evaluation of Additively Manufactured 316L Stainless Steel: Madison Sithiewicz¹; Anna Hayes¹; SeHyuk Park¹; Tribikram Kundu¹; Krishna Muralidharan¹; ¹University of Arizona

Functionally Graded Materials Designed by In Situ Site-specific Texture Control during Laser Powder Bed Fusion: Karl Sofinowski¹; Mallory Wittwer¹; Matteo Seita¹; ¹Nanyang Technological University

Development of Pure Magnesium Stochastic Foams by Additive Manufacturing: Bandar AlMangour¹; Yu-Jin Hwang²; Kyu-Sik Kim³; Dariusz Grzesiak⁴; Kee-Ahn Lee³; ¹King Fahd University of Petroleum and Minerals; ²Inha University, Incheon; ³Inha University, Incheon; ⁴West Pomeranian University of Technology

Tensile Deformation Behavior of Additively Manufactured Co-Cr-Mo Lattice Structures: Bandar AlMangour¹; So-Yeon Park²; Kyu-Sik Kim²; Dariusz Grzesiak³; Kee-Ahn Lee²; ¹King Fahd University of Petroleum and Minerals; ²Inha University, Incheon; ³West Pomeranian University of Technology

Understanding the Microstructure and Magnetic Properties of the L-PBF Nd-Fe-B Permanent Magnetic Material: $\textit{Julan Wu}^1$; $^1\text{University}$ of Nottingham

Effects of Controlled Porosity on Additively Manufactured Stainless Steel 316L Subject to Dynamic Loading: Katie Koube¹; Kevin Lamb²; Taylor Sloop¹; Sudarsanam Babu²; Naresh Thadhani¹; Josh Kacher¹; ¹Georgia Institute of Technology; ²University of Tennessee Knoxville

An Investigation of Elastic Properties of Coal-derived Graphenereinforced Aluminum Nanocomposites Using Friction Stir Welding and Molecular Dynamics Simulations: Saurav Kar¹; Roop Mahajan¹; ¹Virginia Tech

Oxide Layer Delamination during Single Cu Microparticle Impacts at High-velocity: Ahmed Alade Tiamiyu¹; Yuchen Sun¹; Keith Nelson¹; Christopher Schuh¹; ¹Massachusetts Institute of Technology

Influence of Bead's Geometry on the Residual Stresses, Structure and Mechanical Behavior in Wire Arc Additive Manufacturing: Ahmed Elsokaty¹; Sameha Sadek¹; Maha Elsaied¹; Omar Gadalla¹; Hadeer Achraf¹; Hanadi Salem¹; ¹American University in Cairo

The Significant Impact of Grain Refiner on Additively Manufactured TiAl Intermetallic Alloy: Danni Huang¹; Mingxing Zhang¹; Ming Yan²; ¹The University of Queensland; ²Southern University of Science and Technology

Physical and Mechanical Properties of Aluminium Bronze - Stainless Steel Binary Alloy after Laser Metal Deposition: Konstantin Makarenko¹; Oleg Dubinin¹; Igor Shishkovsky¹; ¹Skolkovo Institute of Science and Technology

Effects of Laser Polishing Parameters on Surface Roughness of Additively Manufactured Stainless Steel 316L Parts: Daniil Panov¹; Oleg Oreshkin²; Igor Shishkovsky¹; ¹Skolkovo Institute of Science and Technology; ²National Research Nuclear University MEPhI

ADDITIVE MANUFACTURING

Additive Manufacturing of Metals: ICME Gaps: Material Property and Validation Data to Support Certification — On-Demand Oral Presentations

Sponsored by: TMS: Integrated Computational Materials Engineering Committee, TMS Additive Manufacturing Bridge Committee

Program Organizers: Joshua Fody, NASA Langley Research Center; Edward Glaessgen, NASA Langley Research Center; Christapher Lang, NASA Langley Research Center; Greta Lindwall, KTH Royal Institute of Technology; Michael Sansoucie, NASA Marshall Space Flight Center; Mark Stoudt, National Institute of Standards and Technology

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

Phase Field Informed Monte Carlo Texture Evolution Models for Additive Manufacturing Microstructure Simulation and the Need for Experimental Grain Competition Data: Brodan Richter¹; Joseph Pauza²; Anthony Rollett²; Edward Glaessgen¹; ¹NASA Langley Research Center; ²Carnegie Mellon University

CFD Modelling for AM Processes: Pareekshith Allu¹; ¹Flow Science Inc.

On Scan Path Knowledge for Model Informed Process Planning and Material Quality Predictions: Emil Duong¹; Lukas Masseling¹; Ulrich Thombansen¹; Christian Knaak¹; *Mustafa Megahed*²; ¹Fraunhofer Institute for Laser Technology ILT; ²ESI Group

Predicting Melt Properties Using Atomistic Simulations with a Highly Accurate Physically Informed Neural Network Interatomic Potential: Vesselin Yamakov¹; Yuri Mishin²; Edward Glaessgen³; ¹National Institute of Aerospace; ²Geroge Mason University; ³NASA Langley Research Center

Capturing and Analyzing In-situ Data within the Directed Energy Deposition Process with DEDSmart: *Michael Juhasz*¹; Melanie Lang¹; ¹FormAlloy

ADDITIVE MANUFACTURING

Additive Manufacturing: Advanced Characterization for Industrial Applications — On-Demand Oral Presentations

Sponsored by: TMS Advanced Characterization, Testing, and Simulation Committee, TMS Additive Manufacturing Bridge Committee

Program Organizers: Nadia Kouraytem, Utah State University; Fan Zhang, National Institute of Standards and Technology; Lianyi Chen, University of Wisconsin-Madison

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

Invited

Operando Synchrotron X-ray Studies of Metal Additive Manufacturing: From Fundamentals to Industrial Applications: *Tao Sun*¹; ¹University of Virginia

Thermo-mechanical Behavior of AM and Wrought IN718 Under High-strain-rate Tensile Deformation: Owen Kingstedt¹; John Varga²; S-Danial Salehi¹; ¹University of Utah; ²Sandia National Laboratory

Predicting Failure Location in Additively Manufactured Metals Using an Improved Void Descriptor Function: Dillon Watring¹; Jake Benzing²; Orion Kafka²; Newell Moser²; Li-Anne Liew²; John Erickson³; Nikolas Hrabe²; Ashley Spear¹; ¹University of Utah; ²National Institute of Standards and Technology; ³Sandia National Laboratories

In-situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion: Seyed Mohammad Hojjatzadeh¹; Qilin Guo¹; Niranjan Parab²; Minglei Qu¹; Luis Escano¹; Kamel Fezzaa²; Wes Everhart³; Lianyi Chen¹; ¹University of Wisconsin-Madison; ²Argonne National Laboratory; ³Department of Energy's Kansas City National Security Campus Managed by Honeywell FM&T

ADDITIVE MANUFACTURING

Additive Manufacturing: Alloy Design to Develop New Feedstock Materials III — On-Demand Oral Presentations

Sponsored by: TMS Alloy Phases Committee

Program Organizers: Aurelien Perron, Lawrence Livermore National Laboratory; Joseph McKeown, Lawrence Livermore National Laboratory; Manyalibo Matthews, Lawrence Livermore National Laboratory; Peter Hosemann, University of California, Berkeley; Christian Leinenbach, Empa, Swiss Federal Laboratories for Materials Science and Technology

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

Spherical Micro/Macro Indentation Stress-strain Curves for Additive Manufacturing Materials Design: Jordan Weaver¹; Patxi Fernandex-Zelaia²; Houshang Yin³; Xiaoyuan Lou³; ¹National Institute of Standards and Technology; ²Oak Ridge National Laboratory; ³Auburn University

Development of Al-Ce Alloys for Additive Manufacturing Using the CALPHAD Method: Emily Moore¹; Zachary Sims¹; Hunter Henderson¹; Orlando Rios²; Scott McCall¹; David Weiss³; Aurélien Perron¹; ¹Lawrence Livermore National Laboratory; ²UT Knoxville; ³Eck Industries

Solidification Cracking in Binary Al-Cu Alloys (1.5, 3.0, 4.5, 6.0, and 10 wt.% Cu) Additively Manufactured by Laser Powder Bed Fusion: Keegan Muller¹; Thinh Huynh¹; Holden Hyer¹; Sharon Park¹; Le Zhou²; Jeongmin Woo¹; Abhishek Mehta¹; Brandon McWilliams³; Kyu Cho³; Yongho Sohn¹; ¹University of Central Florida; ²Marquette University; ³DEVCOM US Army Research Laboratory

Additive Manufacturing Feasibility Investigation Using Single Track Study for the Fabrication of Borated Austenitic Stainless Steels via Laser Powder Bed Fusion: Abhishek Mehta¹; Devin Imholte²; Nicolas Woolstenhulme²; Daniel Wachs²; Yongho Sohn¹; ¹University of Central Florida; ²Idaho National Laboratory

Grain Boundary Engineering of 316L Stainless Steel via Laser Powder Bed Fusion: *Matteo Seita*¹; Shubo Gao¹; ¹Nanyang Technological University

ADDITIVE MANUFACTURING

Additive Manufacturing: Large-Scale Metal Additive Manufacturing — On-Demand Oral Presentations

Program Organizers: Yousub Lee, Oak Ridge National Laboratory; Antonio Ramirez, Ohio State University; Yashwanth Bandari, 'Meltio Inc.; Duckbong Kim, Tennessee Technological University; Wei Zhang, Ohio State University

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

Moving Heat Source Process Simulation for Wire Arc Additive Manufacturing via a Mesh-free Method and GPU Computing: Xavier Jimenez¹; Florian Dugast¹; Alaa Olleak¹; Albert To¹; ¹University of Pittsburgh

A Proposed Sustainable Framework to Assess Wire Arc Additive Manufacturing Efficiency in Processing of Different Mechanical Components: Mohamed Fawzy Mohamed¹; Ahmed Salem¹; Ahmed Elsokaty¹; Hanadi Salem¹; ¹The American University in Cairo

Thermo-mechanical FEM Modeling and Machine Learning of Distortion on Overhang Structure in Laser Powder Bed Fusion Additive Manufacturing: Xuesong Gao¹; Tyler High¹; Jesse Zhu²; Wei Zhang¹; Hyeyun Song³; ¹The Ohio State University; ²Cornell University; ³Edison Welding Institute

ADDITIVE MANUFACTURING

Additive Manufacturing: Mechanisms and Mitigation of Aqueous Corrosion and High-temperature Oxidation — On-Demand Oral Presentations

Program Organizers: Amir Mostafaei, Illinois Institute of Technology; Yashar Behnamian, University of Alberta; Bryan Webler, Carnegie Mellon University

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

High Temperature Oxidation Behavior of Additively Manufactured ZrB2-30vol%SiC in CO2: Marharyta Lakusta¹; Nicholas Timme²; William Fahrenholtz²; Jeremy Watts²; Gregory Hilmas²; David Lipke²; ¹Missouri University of Science and Technolog; ²Missouri University of Science and Technology

Effect of Post Processing on the Corrosion Behavior of Selective Laser Melted Nickel Based Super Alloy in Acidic Environment: Mythreyi O V¹; R Jayaganthan¹; B K Nagesha²; ¹IIT Madras; ²ISRO, GTRE

ADDITIVE MANUFACTURING

Additive Manufacturing: Processing, Microstructure and Material Properties of Titanium-based Materials — On-Demand Oral Presentations

Sponsored by: TMS Titanium Committee

Program Organizers: Ulf Ackelid, Freemelt AB; Ola Harrysson, North Carolina State University; Peeyush Nandwana, Oak Ridge National Laboratory; Rongpei Shi, Lawrence Livermore National Laboratory

Friday AM | October 22, 2021 On-Demand Room 1 | MS&T On Demand

Laser Additive Manufacturing Under Reactive Atmosphere: An Approach to Fabricate Ultra-high Strength Commercially Pure Titanium Without Sacrificing Ductility: Dawei Wang¹; Yangping Dong¹; Ming Yan¹; Southern University of Science and Technology

Additive Manufacturing of Shape Memory NiTi Alloys with High Building Rates: Jianing Zhu¹; Evgenii Borisov²; Eduard Farber²; Marcel Hermans¹; Vera Popovich¹; ¹Delft University of Technology; ²Peter the Great Saint-Petersburg Polytechnic University

Influence of Thermal Treatments on the Microstructure and Mechanical Properties of Ti-6Al-4V Built by Electron Beam Melting (EBM): K.S.N. Sesha¹; Kenta Yamanaka¹; Kenta Aoyagi¹; Akihiko Chiba¹; ¹Institute for Materials Research,Tohoku University

Effect of Pores Present in Very Low Volume Fraction on Tensile Properties of Additively Manufactured Titanium Alloys: Pankaj Kumar¹; K.S. Ravi Chandran²; ¹University of New Mexico; ²University of Utah

Surface Analysis and Microstructure Characterization of Electron Beam Melted (EBM) Ti-6Al-4V: *Jared Darius*¹; Daniel Kenney¹; Marcos Lugo¹; ¹Liberty University

In-Person Event: OCTOBER 17-20, 2021• COLUMBUS, OHIO On-Demand Content available:

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

Effect of High Oxygen Content on the Tensile and Fatigue Performance of Selectively Laser Melted (SLM) Ti-6Al-4V in the Hot Isostatic Pressed (HIP) Condition: Anne Osantowski¹; Yuwei Zhai¹; Oscar Quintana¹; Weidong Tong¹; ¹Depuy Synthes

Microstructural Instability in Additively Manufactured Gamma-TiAl Alloy: Johnson Jacob¹; Darren Fraser¹; Stefan Gulizia¹; ¹CSIRO

ENERGY

Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments — On-Demand Oral Presentations

Sponsored by: TMS Nuclear Materials Committee

Program Organizers: Cody Dennett, Idaho National Laboratory; Samuel Briggs, Oregon State University; Christopher Barr, Naval Nuclear Laboratory; Michael Short, Massachusetts Institute of Technology; Janelle Wharry, Purdue University; Cheng Sun, Idaho National Laboratory; Caitlin Taylor, Los Alamos National Laboratory; Emily Aradi, University of Manchester; Khalid Hattar, Sandia National Laboratories

Friday AM | October 22, 2021 On-Demand Room 6 | MS&T On Demand

Session Chair: Caitlin Taylor, Los Alamos National Laboratory

Invited

Unraveling Solute-solvent Interactions in Molten Salt Environments Using X-ray Absorption Spectroscopy: Simerjeet Gill¹; ¹Brookhaven National Lab

Invited

Speciation of Metal Ion Solutes in Molten Salt Matrices for Reactor Applications using Advanced Spectroscopy Techniques: Ruchi Gakhar¹; Michael Woods¹; Simerjeet Gill²; Anatoly Frenkel³; Mehmet Topsakal²; ¹Idaho National Laboratory; ²Brookhaven National Lab; ³Stonybrook Unversity

Invited

Utilizing a Dynamic Segmentation Convolutional Neural Network for Microstructure Analysis: Stephen Taller¹; Luke Scime¹; Kurt Terrani¹; ¹Oak Ridge National Laboratory

Invited

Successful, Unsuccessful, and Partially-successful Attempts at Understanding Alloy Corrosion in Molten Salts: Stephen Raiman¹; ¹Texas A&M University

High Temperature Mechanical Properties of WC/W2C Composites Fabricated by Reactive Sintering of Powders Colloidally Processed: Antonio Javier Sanchez-Herencia¹; Macarena Garcia-Ayala¹; Sandra Tarancon²; Begoña Ferrari¹; Jose Ygnacio Pastor²; ¹Institute for Ceramic and Glass; ²ETSI Caminos-UPM

Radiation Damage Suppression in AISI-316 Steel Nanoparticles: Implications for the Design of Future Nuclear Materials: Emily Aradi¹; Matheus Tunes²; Jacob Lewis-Fell³; Graeme Greaves³; Steven Donnelly³; Jonathan Hinks³; ¹University of Manchester; ²Montanuniversitaet Leoben; ³University of Huddersfield

Effects of He on Nanoscale Mechanical Properties of Er: Eric Lang¹; Caitlin Taylor²; Riley Parrish¹; Patrick Price¹; Raj Tandon¹; Khalid Hattar¹; ¹Sandia National Laboratories; ²Los Alamos National Lab

Characterizing the Spatial and Temporal Evolution of Iron Thin Films during Coupled Irradiation and Corrosion: *Benjamin Derby*¹; Trevor Clark²; Junsoo Han³; Khalid Hattar²; John Scully³; Matthew Janish¹; Cortney Kreller¹; Nan Li¹; ¹Los Alamos National Laboratory; ²Sandia National Laboratory; ³University of Virginia

Effect of Ion Irradiation on the Corrosion of 304SS in PWR Simulated Water Chemistry: Fu-Yun Tsai¹; Ryan Schoell¹; Khalid Hattar²; Djamel Kaoumi¹; ¹North Carolina State University; ²Sandia National Laboratories

Material Degradation Pathways of UO₂ under Oxygen, Humidity, and Temperature Probed by XAFS: *Juejing Liu*¹; Aiping Chen²; Joanne Stubbs³; Peter Eng³; Hongwu Xu²; Steven Conradson¹; Xiaofeng Guo¹; ¹Washington State University; ²Los Alamos National Laboratory; ³University of Chicago

Deep Learning Pipeline for Cavity Segmentation in Transmission Electron Microscopy: Chun Yin Wong¹; Xing Wang²; Zhe Fan³; Karren More⁴; Sergei Kalinin⁴; Maxim Ziatdinov⁴; ¹University of Tennessee, Knoxville; ²The Pennsylvania State University, Oak Ridge National Laboratory; ³Lamar University, Oak Ridge National Laboratory; ⁴Oak Ridge National Laboratory

ENERGY

Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments — On-Demand Poster Presentations

Sponsored by: TMS Nuclear Materials Committee

Program Organizers: Cody Dennett, Idaho National Laboratory; Samuel Briggs, Oregon State University; Christopher Barr, Naval Nuclear Laboratory; Michael Short, Massachusetts Institute of Technology; Janelle Wharry, Purdue University; Cheng Sun, Idaho National Laboratory; Caitlin Taylor, Los Alamos National Laboratory; Emily Aradi, University of Manchester; Khalid Hattar, Sandia National Laboratories

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Session Chairs: Emily Aradi, University of Manchester; Cody Dennett, Idaho National Laboratory

Effect of Dilute Magnetism in a Topological Insulator: Firoza Kabir¹; ¹University of Central Florida

Modeling of Graphite Oxidation in Water Vapor Ingress Accidental Conditions for High Temperature Gas-cooled Reactors: Yi Je Cho¹; $Kathy\ Lu^2$; ¹Virginia Tech; ²Virginia Polytechnic Institute and State University

Prediction Thermo-physical Characteristics Nickel-based Superalloys Directional Crystallization: Alexander Glotka¹; Vadim Olshanetskii¹; ¹Zaporizhzhia Polytechnic National University

Tensile Performance of Diffusion Bonded AA6061-AA6061 Cladding-Cladding Interface for Application in U-10Mo Monolithic Fuel Plates: Abhishek Mehta¹; Jeongmin Woo¹; Jeffrey Giglio²; Jan-Fong Jue²; Dennis Keiser²; James Cole²; Yongho Sohn¹; ¹University of Central Florida; ²Idaho National Laboratory

The Effect of Rotary Swaging on Zirconium Alloys and its Microstructure Property Correlation: *Gaurav Singh*¹; Raviraj Verma¹; K I Vishnu Narayanan²; Umesh Kumar Arora²; R. Jayaganthan¹; ¹Indian Institute of Technology Madras; ²NFC Hyderabad

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Coatings for Wear and Corrosion Protection — On-Demand Oral Presentations

Program Organizers: Evelina Vogli, Lm Group Holdings Inc.; Virendra Singh, Schlumberger

Friday AM | October 22, 2021 On-Demand Room 9 | MS&T On Demand

Tribological Resistance and Anti-corrosive Properties of Cr-based Electrochemical Nano-composite Coatings Reinforced with Yttria Stabilised Zirconia and Carbon Nanotubes: *Pragya Tripathi*¹; Prvan Katiyar¹; Janakarajan Ramkumar¹; Kantesh Balani¹; ¹Indian Institute of Technology

Electroplated Ni-MMC Coatings as a Base Coating to Improve High Temperature Corrosion Caused by Sodiumvanadates: *Christoph Grimme*¹; Robin Kupec¹; Xabier Montero¹; Mathias Galetz¹; ¹Dechema-Forschungsinstitut

Galvanic Corrosion of AZ31B Ultrasonically-welded with Bare and Zn-coated Steels: Jiheon Jun¹; Jian Chen¹; Yong Chae Lim¹; Michael Brady¹; Donovan Leonard¹; Zhili Feng¹; ¹Oak Ridge National Laboratory

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Coatings for Wear and Corrosion Protection — On-Demand Poster Presentations

Program Organizers: Evelina Vogli, Lm Group Holdings Inc.; Virendra Singh, Schlumberger

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Hot Corrosion Behavior of Yb₂O₃-Gd₂O₃-Y₂O₃ Co-Stabilized Zirconia in Thermal Barrier Coatings with a Lewis Neutral Layer: *Junseong Kim¹*; Dowon Song²; Guanlin Lyu³; Janghyeok Pyeon¹; SeungCheol Yang¹; Yeon-Gil Jung¹; ¹Department of Materials Convergence and System Engineering of Changwon National University; ²Hanyang University; ³Changwon National University

MATERIALS-ENVIRONMENT INTERACTIONS

Advanced Materials for Harsh Environments — On-Demand Oral Presentations

Sponsored by: ACerS Electronics Division

Program Organizers: Navin Manjooran, Solve Technology and Research, Inc.; Gary Pickrell, Virginia Tech

Friday AM | October 22, 2021 On-Demand Room 9 | MS&T On Demand

Investigation of Automotive Materials Compatibility for Regenerative Fuels – Oxymethylene Dimethyl Ether (OME): Ruediger Reitz¹; ¹Technische Universität Darmstadt

Structural Response of Si (111) and Diamond/Si (111) to 193 nm and 5 ns Laser Pulses: Chaoya Han¹; ¹University of Delaware

Influence of the Gas Composition on the Metal Dusting Attack of Oxide Forming Alloys: Clara Schlereth¹; Anke Ulrich¹; Mathias Galetz¹; ¹DECHEMA-Forschungsinstitut

Microstructure and Mechanical Properties of Friction Stir Welded Haynes 282: Mageshwari Komarasamy¹; Christopher Smith¹; Jens Darsell¹; Woongjo Choi¹; Saumyadeep Jana¹; Anand Kulkarni²; Kyle Stoodt²; Glenn Grant¹; ¹Pacific Northwest National Laboratory; ²Siemens Corporation

Enhancing the Hardness and Corrosion Resistance of Ni-based Alloys with Thermomechanical Processing: Haruka Shima¹; Manami Mori²; Kenta Yamanaka¹; Kazuo Yoshida¹; Akihiko Chiba¹; ¹Tohoku University; ²National Institute of Technology, Sendai College

Robust Heat Resistant Superhydrophobic Coatings Fabricated by Functionalized Nanoparticles: Anna Schmidt-Verma¹; Thomas Fischer¹; Sanjay Mathur¹; Universität zu Köln

Finite Element Corrosion Model and Experimental Characterization of Austenitic Stainless-Steel Engine Valves Oxidized in CO2 at 700 °C: Iman Abdallah¹; Louis Bailly-Salins¹; Xueyang Wu²; Robert Ullberg²; Taeho Kim¹; Mohamed ElBakhshwan¹; Mark Carroll³; John Perepezko¹; Wen Jiang⁴; Simon Phillpot²; Michael Tonks²; Adrien Couet¹; ¹UW-Madison; ²University of Florida; ³Tenneco; ⁴Idaho National Laboraotry (INL)

Corrosion Behaviors of Carbon Steels and Cr-bearing Steels in Supercritical ${\rm CO_2}$: Kaiyang Li¹; Yimin Zeng¹; $^1{\rm CanmetMATERIALS}$, Natural Resources Canada

Electrical, Microstructural and Thermomechanical Properties of Doped-LaCrO₃ Ceramics for High Temperature Electronics and Sensing Applications: Javier Mena¹; Edward Sabolsky¹; Katarzyna Sabolsky¹; Konstantinos Sierros¹; Kavin Sivaneri Varadharajan Idhaiam¹; ¹West Virginia University

Evaluation of High Temperature Planar Passive Wireless Sensor Fabricated by Stereolithography Process: Kavin Sivaneri Varadharajan Id¹; Matthew Barre¹; Zachary Lynch¹; Engin Ciftyurek¹; Katarzyna Sabolsky¹; Edward Sabolsky¹; Konstantinos Sierros¹; Daryl Reynolds¹; ¹West Virginia University

IRON AND STEEL (FERROUS ALLOYS)

Advancements in Steel Structural Refinement — On-Demand Oral Presentations

Sponsored by: AIST: Metallurgy—Processing, Products and Applications Technology Committee

Program Organizers: Charles Enloe, CBMM North America; Emmanuel De Moor, Colorado School of Mines; Jianfeng Wang, General Motors Global Research and Development; Jose Rodriguez-Ibabe, CEIT and TECNUN; Steven Jansto, Research and Development Resources

Friday AM | October 22, 2021 On-Demand Room 8 | MS&T On Demand

New Modelling Tools for Nb Microalloyed Plate Rolling Design: Beatriz Pereda¹; Jose Rodriguez-Ibabe¹; Marcelo Rebellato²; *Pello Uranga*¹; ¹CEIT and TECNUN (University of Navarra); ²RMS

ELECTRONIC AND MAGNETIC MATERIALS

Advances in Dielectric Materials and Electronic Devices — On-Demand Poster Session

Sponsored by: ACerS Electronics Division

Program Organizers: Amar Bhalla, University of Texas; Ruyan Guo, University of Texas at San Antonio; Rick Ubic, Boise State University; Matjaž Spreitzer, Jožef Stefan Institute

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Dielectric NDE for On-line Cure Monitoring and Defect Detection in Engineered Composites: *William Flynn*¹; Bryan Gamboa¹; Sean Garnsey¹; Ruyan Guo¹; Amar Bhalla¹; ¹University of Texas at San Antonio

Features on the Structural Phase Transition in La-modified AgNbO₃ Lead-free Ceramics: Karine Felix Santos de Jesús¹; Atair Carvalho da Silva¹; Yanela Mendez-González²; Ruyan Guo³; Amar Bhalla³; *Jose de los Santos Guerra*¹; ¹Universidade Federal de Uberlandia; ²Universidad de La Habana; ³The University of Texas at San Antonio

Graphs Theory and Electrophysical Parameters Characterization: Vojislav Mitic¹; Aleksandar Stajcic²; Branislav Randjelovic¹; Srdjan Ribar³; Bojana Markovic³; Maria Cebela⁴; Ivana Radovic⁵; Hans Fecht⁶; ¹University Nis; ²University of Belgrade, Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Belgrade; ³University of Belgrade; ⁴University of Belgrade, 'VINCA' Institute of Nuclear Sciences – National Institute of the Republic of Serbia, Belgrade; ⁵University of Belgrade; 'University of Belgrade; 'University Ulm, Institute of Functional Nanosystems FNS

Study and Physical Characterization of Hybrid PVDF/Ceramic Composites: Evaristo Alexandre Falcão¹; Atair Carvalho da Silva²; Yanela Mendez-González³; Ruyan Guo⁴; Amar Bhalla⁴; *Jose de los Santos Guerra*²; ¹Universidade Federal da Grande Dourados; ²Universidade Federal de Uberlandia; ³Universidad de La Habana; ⁴The University of Texas at San Antonio

Sensitivity Analysis on the Application of Direct Piezo-electric Effect Using the Finite-element Extended Complex Variable Method: Carlos Acosta¹; Jose de los Santos Guerra²; Ruyan Guo³; Amar Bhalla³; ¹Inghieri Solutions LLC; ²Universidade Federal de Uberlandia; ³University of Texas at San Antonio

ELECTRONIC AND MAGNETIC MATERIALS

Advances in Dielectric Materials and Electronic Devices — On Demand Oral Presentations

Sponsored by: ACerS Electronics Division

Program Organizers: Amar Bhalla, University of Texas; Ruyan Guo, University of Texas at San Antonio; Rick Ubic, Boise State University; Matjaž Spreitzer, Jožef Stefan Institute

Friday AM | October 22, 2021 On-Demand Room 5 | MS&T On Demand

Session Chair: Matjaz Spreitzer, Jozef Stefan Institute

Invited

Neural Networks, Graph Approach and Fractals Application on Electronics Parameters Determination and Prediction in Perovskite Ceramics: Vojislav Mitic¹; Ivana Radovic²; Branislav Randjelovic¹; Srdjan Ribar³; Cristine Serpa⁴; Ivana Ilic¹; Aleksandar Stajcic⁵; Vesna Paunovic¹; Branislav Vlahovic⁶; ¹University of Nis; ²University of Belgrade, 'VINCA' Institute of Nuclear Sciences – National Institute of the Republic of Serbia; ³University of Belgrade; ⁴ISEL - Instituto Superior de Engenharia de Lisboa do Instituto Politécnico de Lisboa; ⁵University of Belgrade, Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia; ⁶North Carolina Central University (NCCU)

Effect of Fluoride Substitution on the Morphology and Electrical Properties of Dielectric Storage Material: Narsingh Singh¹; Laxman Singh²; Dinesh Prajapati²; Narayan Singh²; Fow-Sen Choa¹; Bradley Arnold¹; Kamdeo Mandal²; Lisa Kelly¹; Atendra Kumar²; ¹University of Maryland Baltimore County; ²Indian Institute of Technology, BHU

Electrical and Dielectric Behaviour of Li-substituted Potassium Sodium Niobate System: Maryam Azadeh¹; Till Froemling¹; Ze Xu²; Yixuan Liu²; Ke Wang²; ¹TU Darmstadt; ²Tsinghua University

Epitaxial SrTiO₃ Thin Films on Semiconductor Substrates: *Matjaž Spreitzer*¹; ¹Jožef Stefan Institute

Structure and Domain Morphology of Quenched $Na_{1/2}Bi_{1/2}TiO_3$ -BaTiO $_3$ Piezoceramics: Andreas Wohninsland 1 ; Ann-Katrin Fetzer 1 ; Hans-Joachim Kleebe 1 ; Lalitha Kodumudi Venkataraman 1 ; 1 Technical University of Darmstadt, Germany

Comparison of Chemical Treatments for the Modification of VHB 4910's Mechanical Properties: $Isaac\ Liu^1$; Hector Medina¹; 1 Liberty University

Direct-writing of Embedded Flexible Sensors for Strain and Temperature Monitoring for Stretchable Applications: Akshay Kakar¹; Derrick Banerjee¹; Edward Sabolsky¹; Konstantinos Sierros¹; ¹West Virginia University

IRON AND STEEL (FERROUS ALLOYS)

Advances in Ferrous Metallurgy — On-Demand Oral Presentations

Sponsored by: AIST Metallurgy—Processing, Products and Applications Technology Committee

Program Organizers: Daniel Baker, General Motors Corporation; Emmanuel De Moor, Colorado School of Mines; Kishlay Mishra, Nucor Castrip Arkansas LLC; Lijia Zhao, ArcelorMittal Global R&D

Friday AM | October 22, 2021 On-Demand Room 8 | MS&T On Demand

New Roll Alloys Concepts Using in Finishing Stands of Rebar Rolling: Babak Nazari¹; Adel Sheikhhosseini¹; Hossein Zakerinia¹; ¹CSMETAL/Chodan Sazan

Research on the Phosphate Capacity of CaO-FeO-MgO-SiO $_2$ -MnO-TiO $_2$ -V $_2$ O $_5$ -P $_2$ O $_5$ Slags: *Yun Zhou*¹; Rong Zhu¹; Kai Dong¹; ¹University of Science and Technology Beijing

Radiative Properties of Al-Si Coated 22MnB5 Steel: Cameron Klassen¹; Boxuan Zhao¹; Kyle Daun¹; ¹University of Waterloo

Studying Processing - Microstructure - Mechanical Property Correlation in a Multi-phase Advanced High Strength Steel: Monowar Hossain¹; Sanjeev Sharma²; Yanwen Wang²; Daniel Stephens²; Nilesh Kumar³; ¹University of Alabama, Tuscaloosa; ²Nucor Steel Decatur, LLC

Evaluation of Different Austenitization Sub-Models for 22MnB5 Steel Using Bayesian Model Selection Technique: Boxuan Zhao¹; Constantin Chiriac²; Kyle Daun¹; ¹University of Waterloo; ²Ford Motor Company

Effect of CO2 Injection into Blast Furnace Tuyeres on Smelting Parameters: Juanjuan Jiang¹; Rong Zhu¹; Shengtao Qiu²; ¹University of Science and Technology Beijing; ²Central Iron and Steel Research Institute

IRON AND STEEL (FERROUS ALLOYS)

Advances in Metallic Coated Advanced Steels — On-Demand Oral Presentations

Sponsored by: AIST: Metallurgy Processing Products and Applications Technology Committee , AIST: Galvanizing Technology Committee

Program Organizers: Joseph McDermid, McMaster University; Frank Goodwin, ILZRO

Friday AM | October 22, 2021 On-Demand Room 8 | MS&T On Demand

Liquid Metal Embrittlement of 3rd Generation Advanced High Strength Steel Driven by Nano-intermetallic Phase Formation Along Grain Boundaries: Yuki Ikeda¹; Anirban Chakraborty²; Hassan Ghassemi-Armaki²; Robert Maass¹; ¹Federal Institute for Materials Research and Testing (BAM); ²ArcelorMittal Global Research and Development

Insight into the Mechanism of Liquid Metal Embrittlement in Resistance Spot Welding of Zn-coated Dual Phase Steel: The Role of Boron and Silicon: Elahe Akbari¹; Philipp Kürnsteiner¹; Peter Oberhumer¹; Günter Hesser¹; Heiko Groiss¹; Martin Arndt²; Martin Gruber²; Robert Sierlinger²; ¹Christian Doppler Laboratory for Nanoscale Phase Transformations, Center of Surface and Nanoanalytics, Johannes Kepler University Linz; ²Voestalpine Stahl GmbH

Optimal Wavelength Selection for Improved Multi-wavelength Pyrometry of Advanced High Strength Steel: Fatima Suleiman¹; Kaihsiang Lin¹; Kyle Daun¹; ¹University of Waterloo

PROCESSING AND MANUFACTURING

Advances in Surface Engineering — On-Demand Advances in Surface Engineering

Sponsored by: TMS Surface Engineering Committee

Program Organizers: Rajeswaran Radhakrishnan, Faraday Technology Inc; Brian Skinn, Faraday Technology, Inc.; Timothy Hall, Faraday Technology Inc; Michael Roach, University of Mississippi Medical Center; Sandip Harimkar, Oklahoma State University; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University

Friday AM | October 22, 2021 On-Demand Room 12 | MS&T On Demand

Session Chairs: Holly Garich, Faraday Technology, Inc; Rajeswaran Radhakrishnan, Faraday Technology, Inc.

High Adhesive Joint Durability of Aluminum Alloys with Chemical Free Treatments: $John\ Ho^1$; Alp Manavbasi¹; ¹Novelis

Influences of Varied Electro-discharge Machining Operations on Surface Conditions of a Nickel-Base Superalloy: *Tim Gabb*¹; T. Smith¹; J. Telesman¹; C. Kantzos¹; R. Rogers¹; D. Brinkman²; T. Ubienski²; ¹NASA Glenn Research Center; ²HX5 Sierra, LLC

Ionic Polymer-Metal Composite (IPMC) Degradation Study and Solution Considerations for Biomimetic Thin-film Actuator Applications: Allison Arnold¹; Kavin Sivaneri Varadharajan Idhaiam¹; Lisa Hilgar¹; William Brion¹; Edward Sabolsky¹; Ji Su²; ¹West Virginia University; ²NASA Langley Research Center

Mechanical Ball Milling of Gas Atomized Ti48Al2Cr2Nb Powder for Preventing Smoking in Electron Beam Additive Manufacturing Process: SeungKyun Yim¹; Huakang Bian²; Keiji Yanagihara²; Kenta Aoyagi²; Akihiko Chiba²; ¹Tohoku University; ²Institute for Materials Research, Tohoku University

Surface Evolution and Corrosion Behavior of Cu-doped Carbidereinforced Martensitic Steels in a Sulfuric Acid: *Kenta Yamanaka*¹; Manami Mori²; Kazuo Yoshida¹; Akihiko Chiba¹; ¹Tohoku University; ²National Institute of Technology, Sendai College

Erosion Resistant and Passively Emitting Composite Coatings for Space Charge Mitigation Applications: Rajeswaran Radhakrishnan¹; Danny Liu¹; Timothy Hall¹; Maria Inman¹; Earl Jennings Taylor²; Stephen Snyder¹; Matthew Robertson²; Trace Taylor²; JR Dennison²; ¹Faraday Technology Inc; ²Utah State University

PROCESSING AND MANUFACTURING

Advances in Surface Engineering — On-Demand Poster Presentations

Sponsored by: TMS Surface Engineering Committee

Program Organizers: Rajeswaran Radhakrishnan, Faraday Technology Inc; Brian Skinn, Faraday Technology, Inc.; Timothy Hall, Faraday Technology Inc; Michael Roach, University of Mississippi Medical Center; Sandip Harimkar, Oklahoma State University; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Effect of Laser Shock Peening on Residual Stress Distribution of 304 Austenitic Steel: Danbi Song¹; Ryoonhan Kim¹; Jeong Suh¹; Dongsig Shin¹; ¹Korea Institute of Machinery and Materials

ARTIFICIAL INTELLIGENCE

Al for Big Data Problems in Advanced Imaging, Materials Modeling and Automated Synthesis — On-Demand Oral Presentations

Sponsored by: TMS: Computational Materials Science and Engineering Committee

Program Organizers: Mathew Cherukara, Argonne National Lab; Badri Narayanan, University of Louisville; Subramanian Sankaranarayanan, University of Illinois (Chicago)

Friday AM | October 22, 2021 On-Demand Room 2 | MS&T On Demand

Invited

Machine Learning for Automated Experiment in Scanning Probe and Electron Microscopy: Sergei Kalinin¹; ¹Oak Ridge National Laboratory

Invited

Deep Learning and Uncertainty Quantification for Automated Experiments: Bobby Sumpter¹; Ayana Ghosh¹; Maxim Ziatdinov¹; Sergei Kalinin¹; Ondrej Dyck¹; ¹Oak Ridge National Laboratory

Prediction of Dynamic Properties of LiF and FLiBe Molten Salts with DeepPot Network Potentials: Alejandro Rodriguez¹; Hu Ming¹; ¹University of South Carolina

Understanding the Composition-property Relationship of Glasses Using Interpretable Machine Learning: Ravinder Bhattoo¹; Suresh Bishnoi¹; Mohd Zaki¹; N. M. Anoop Krishnan¹; ¹Indian Institute of Technology Delhi

CERAMIC AND GLASS MATERIALS

Ceramic Matrix Composites — On-Demand Oral Presentations

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Narottam Bansal, NASA Glenn Research Center; Jacques Lamon, CNRS; Sung Choi, Naval Air Systems Command

Friday AM | October 22, 2021 On-Demand Room 4 | MS&T On Demand

Invited

Subcritical Crack Growth during Static Fatigue of Hi-Nicalon-S SiC Fiber: Randall Hay¹; Marina Ruggles-Wrenn²; ¹U.S. Air Force Research Laboratory; ²Air Force Institute of Technology

Invited

Static Fatigue of Hi-Nicalon-S Fiber Tows at Elevated Temperature in Air and in Steam: Scott Robertson¹; *Marina Ruggles-Wrenn*¹; Randall Hay²; Theodore Shillig¹; Ronald Mitchell¹; Brian Kroeger¹; Logan Gumucio¹; ¹Air Force Institute of Technology; ²AFRL

Tribological Performance of HfB2-ZrB2 Based Ultra High Temperature Ceramics Consolidated via Spark Plasma Sintering: Shruti Dubey¹; Kantesh Balani¹; Ambreen Nisar²; Shikha Awasthi³; ¹Indian Institute of Technology: ²Florida International University; ³Indian Institute of Science Bangalore

The Effect of Nanosized Additives on the Properties of Silicon Carbide-based Materials: $Ihor\ Hnylytsia$

Developmental Efforts on Alternative Building Material using Kaolinbased Geopolymer from Local Sources in Nigeria: Oluwafemi Adelabu¹; Oluwagbenga Odewole²; Augustine Nsah²; Tolulope Akinbogun²; ¹University of Johannesburg; ²Federal University of Technology, Akure

CERAMIC AND GLASS MATERIALS

Ceramics and Glasses Modeling by Simulations and Machine Learning — On-Demand Oral Presentations

Sponsored by: ACerS Glass & Optical Materials Division

Program Organizers: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas at Arlington; N. M. Anoop Krishnan, Indian Institute of Technology Delhi

Friday AM | October 22, 2021 On-Demand Room 4 | MS&T On Demand

Invited

Looking for Order in Disorder: Topological Data Analysis of Glass Structure: Morten Smedskjaer¹; Søren Sørensen¹; Christophe Biscio¹; Lisbeth Fajstrup¹; Mathieu Bauchy²; ¹Aalborg University; ²University of California, Los Angeles

Invited

Graph ODE for Learning Dynamic Systems: *Yizhou Sun*¹; Wei Wang¹; Zijie Huang¹; ¹UCLA

Machine Learning as a Tool to Accelerate the Design of Nuclear Waste Glasses with Enhanced Sulfur Loadings: *Taihao Han*¹; Xinyi Xu²; Jie Huang¹; Albert A. Kruger³; Aditya Kumar¹; Ashutosh Goel²; ¹Missouri University of Science and Technology; ²Rutgers, The State University of New Jersey; ³U.S. Department of Energy, Office of River Protection

Decomposing the Strength of Hydrated Cement Compositions by Machine Learning: Yu Song¹; Gaurav Sant¹; Mathieu Bauchy¹; ¹University of California, Los Angeles

Toward Revealing Full Atomic Picture of Nanoindentation Deformation Mechanisms in Li2O-2SiO2 Glass-ceramics: Binghui $Deng^1$; 1 Corning Inc

Modeling Polaron Hopping in Ternary Spinel Oxides: $Maytal\ Caspary\ Toroker^1$; ¹Technion - Israel Institute of Technology

Impact of Irradiation on the Properties of Gel Layer Formed After Aqueous Corrosion of Borosilicate Glasses: *Amreen Jan*¹; N.M Anoop Krishnan¹; ¹Indian Institute of Technology Delhi

Elucidating Compositional Governance of Optical Properties Oxide Glasses Using Interpretable Machine Learning: Mohd Zaki¹; Vineeth Venugopal¹; Ravinder Bhattoo¹; Suresh Bishnoi¹; Sourabh Kumar Singh¹; Amarnath R. Allu²; Jayadeva¹; N. M. Anoop Krishnan¹; ¹Indian Institute of Technology Delhi; ²Glass Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata

CERAMIC AND GLASS MATERIALS

Ceramics and Glasses Modeling by Simulations and Machine Learning — On-Demand Poster Presentations

Sponsored by: ACerS Glass & Optical Materials Division

Program Organizers: Mathieu Bauchy, University of California, Los Angeles; Peter Kroll, University of Texas at Arlington; N. M. Anoop Krishnan, Indian Institute of Technology Delhi

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Effect of Polydispersity on the Fracture Properties of Calcium-Silicate-Hydrate Gel: Ashish Yadav¹; N.M. Anoop Krishnan¹; ¹Indian Institute of Technology (IIT), Delhi

Deciphering the Viscosity of Glass Materials with Machine Learning: *Yu Song*¹; Mathieu Bauchy¹; ¹University of California, Los Angeles

Development of a Transferable Inter-atomic Potential for Boroaluminosilicate Glasses: *Rajesh Kumar*¹; N M Anoop Krishnan¹; ¹Indian Institute of Technology Delhi

MATERIALS-ENVIRONMENT INTERACTIONS

Coatings to Protect Materials from Extreme Environments — On-Demand Coatings for Extreme Environments

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Kang Lee, NASA Glenn Research Center; Yutaka Kagawa, The University of Tokyo; Daniel Mumm, University of California, Irvine; Rodney Trice, Purdue University; Emmanuel Boakye, UES Inc.; Valerie Wiesner, NASA Langley Research Center; Edward Gorzkowski, Naval Research Laboratory; Scooter Johnson, Naval Research Laboratory

Friday AM | October 22, 2021 On-Demand Room 9 | MS&T On Demand

Session Chair: Emmanuel Boakye, UES Inc.

Invited

Modelling Oxygen Permeability through Top Coat and Thermally Grown Oxide in Dense Yb2Si2O7 Environmental Barrier Coatings: *Kuiying Chen*¹; ¹NRC

Obtaining Surface Titanium Coatings for Enhance the Material Performance in SHS Conditions: Borys Sereda¹; Dmytro Sereda¹; Dneprovsky State Technical University

Obtaining Surface Coatings Providing Protection Against High Temperatures in the Production of Coke: Borys Sereda¹; Dmytro Sereda¹; Dneprovsky State Technical University

Coatings for Improving the High Temperature Oxidation Resistance of Mo-based Systems: Katharina Beck¹; Frauke Hinrichs²; Martin Heilmaier²; Anke Ulrich¹; Mathias Galetz¹; ¹DECHEMA-Forschungsinstitut; ²Karlsruher Institut für Technologie

In-Situ Ceramic Oxide Coating on Stainless Steels for Molten Salt Corrosion Prevention for Concentrated Solar Power Applications: Animesh Kundu¹; Sreya Dutta²; Chase Clapp¹; Hannah Clarkson¹; ¹Lehigh University; ²Dynalene, Inc

MATERIALS-ENVIRONMENT INTERACTIONS

Coatings to Protect Materials from Extreme Environments — On-Demand Poster Presentations

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Kang Lee, NASA Glenn Research Center; Yutaka Kagawa, The University of Tokyo; Daniel Mumm, University of California, Irvine; Rodney Trice, Purdue University; Emmanuel Boakye, UES Inc.; Valerie Wiesner, NASA Langley Research Center; Edward Gorzkowski, Naval Research Laboratory; Scooter Johnson, Naval Research Laboratory

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Thermal and Mechanical Properties of Y₃(Nb_{1-x}Ta_x)O₇ as a Material for Thermal Barrier Coating: *Janghyeok Pyeon*¹; Dowon Song²; Gualin Lyu³; Junseong Kim³; Seungcheol Yang³; Yeongil Jung³; ¹Materials Convergence and System Engineering of Changwon National University; ²Hangyang University; ³Changwon National University

Self-generated Tribo-coatings on Glass from Nano-dispersions in Aqueous Medium: Sourav Sahoo¹; Om Khatri²; N. M. Anoop Krishnan¹; Nitya Gosvami¹; ¹Indian Institute of Technology (IIT) Delhi; ²CSIR-Indian Institute of Petroleum

MATERIALS-ENVIRONMENT INTERACTIONS

Computation Assisted Materials Development for Improved Corrosion Resistance — On-Demand Oral Presentations

Program Organizers: Rishi Pillai, Oak Ridge National Laboratory; Laurence Marks, Northwestern University

Friday AM | October 22, 2021 On-Demand Room 9 | MS&T On Demand

Modelling Alkoxide Corrosion Initiation of Pure-aluminum in Ethanol with Integrated Simulation-based Experimental Methods: Visheet Arya¹; Rüdiger Reitz¹; Matthias Oechsner¹; Eugen Gazenbiller¹; Daniel Höche¹; ¹MPA-IfW TU Darmstadt

Morphological Stability of Electrostrictive Thin Films: *Jin Zhang*¹; Peter Voorhees¹; ¹Northwestern University

Modelling Microstructural Evolution of Aluminide Coatings on Nibased Superalloys: Wencai Leng¹; Dmitry Naumenko¹; Rishi Pillai²; ¹Forschungszentrum Jülich GmbH; ²Oak Ridge National Laboratory

Modeling of High-temperature Corrosion of Zirconium Alloys Using the eXtended Finite Element Method (X-FEM): Louis Bailly-Salins¹; Léo Borrel¹; Wen Jiang²; Benjamin Spencer²; Koroush Shirvan³; Adrien Couet¹; ¹University of Wisconsin - Madison; ²Idaho National Laboratory; ³Massachusetts Institute of Technology

First Steps Towards a Coupled Thermodynamic-kinetic Model to Predict Sulfate Deposit Induced Hot Corrosion of Aluminized Nibased Superalloys: Yaping Wang¹; Rishi Pillai²; Elena Yazhenskikh¹; Michael Müller¹; Dmitry Naumenko¹; ¹Forschungszentrum jülich; ²Oak Ridge National Laboratory

MATERIALS-ENVIRONMENT INTERACTIONS

Computation Assisted Materials Development for Improved Corrosion Resistance — On-Demand Poster Presentations

Program Organizers: Rishi Pillai, Oak Ridge National Laboratory; Laurence Marks, Northwestern University

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Predictive Modeling of Microstructure Induced Variations in the Sensitization Response of 5XXX Aluminum Alloys: *Likun Sun*¹; Syeda Noor E Sumaiya¹; Matthew Steiner¹; ¹University of Cincinnati

NANOMATERIALS

Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — On-Demand Oral Presentations

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Polytechnic Institute and State University; Edward Gorzkowski, Naval Research Laboratory; Jian Shi, Rensselear Polytechnich University; Michael Naguib, Tulane University; Sanjay Mathur, University of Cologne

Friday AM | October 22, 2021 On-Demand Room 11 | MS&T On Demand

Invited

Surface-engineered CeO2 Nanocrystals: Catalysis and Beyond: Ruigang Wang¹; ¹The University of Alabama

Invited

2D Material and van der Waal Heterostructure Nanoelectromechanical Systems (NEMS): Philip Feng¹; ¹University of Florida

Invited

Effects of Layer Thickness and Constituent Material on the Wear and Corrosion Resistance of Nanostructured Multilayers: Wenbo Wang¹; Wenjun Cai¹; ¹Virginia Polytechnic Institute and State University

Invited

Nanocrystalline Refractory Ceramic Synthesis Using High Char Polymers: Matthew Laskoski¹; Boris Dyatkin¹; Tristan Butler¹; ¹US Naval Research Lab

Invited

Supercrystalline Nanocomposites: Boosting and Controlling the Mechanical Behavior of These New Multifunctional Materials: *Diletta Giuntini*¹; Buesra Bor²; Alexander Plunkett²; Berta Domenech²; Gerold Schneider²; ¹Eindhoven University of Technology; ²Hamburg University of Technology

Invited

Controlling Synthesis of Nanostructures with Nanoscale Phase Diagrams: *Ricardo Castro*¹; ¹University of California, Davis

Ti3C2 MXene-polyvinyl Alcohol Hybrids for Photothermal Self-healing: Yi Je Cho¹; *Kathy Lu²*; ¹Virginia Tech; ²Virginia Polytechnic Institute and State University

Universal Approach towards Metal Chalcogenide Materials from Molecular Building Blocks: Veronika Brune¹; Sanjay Mathur¹; ¹University of Cologne

Single Acid One-pot Process as an Effective Method for Controlled Generation of Coal-derived Graphene Quantum Dots (GQDs): Saurav Kar¹; Roop Mahajan¹; Virginia Polytechnic Institute and State University

NANOMATERIALS

Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials — On-Demand Poster Presentations

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Haitao Zhang, University of North Carolina at Charlotte; Gurpreet Singh, Kansas State University; Kathy Lu, Virginia Polytechnic Institute and State University; Edward Gorzkowski, Naval Research Laboratory; Jian Shi, Rensselear Polytechnich University; Michael Naguib, Tulane University; Sanjay Mathur, University of Cologne

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

A Comparative Study of Tantalum Disulfide as Lithium-ion and Potassium-ion Batteries: Davi Marcelo Soares¹; Gurpreet Singh¹; ¹Kansas State University

Tungsten Ditelluride, A Semimetal Transition Metal Dichalcogenide as Active Material for Monovalent-ion Battery Electrodes: *Davi Marcelo Soares*¹; Gurpreet Singh¹; ¹Kansas State University

SPECIAL TOPICS

Curricular Innovations and Continuous Improvement of Academic Programs (and Satisfying ABET along the Way): The Elizabeth Judson Memorial Symposium — On-Demand Oral Presentations

Sponsored by: TMS: Accreditation Committee, TMS: Education Committee

Program Organizers: Alison Polasik, Campbell University; Susan Gentry, University of California, Davis; Jeffrey Fergus, Auburn University; Assel Aitkaliyeva, University of Florida; Kester Clarke, Colorado School of Mines; Subhadra Gupta, University of Alabama; Gregg Janowski, University of Alabama at Birmingham; M. Norton, Washington State University

Friday AM | October 22, 2021 On-Demand Room 13 | MS&T On Demand

An Innovative and Integrated Approach to Materials Selection and Simulation for Engineering Education: Lakshana Mohee¹; Nicola Stefani¹; ¹ANSYS Granta

Assessment of Ceramic Higher Education Curricula in Nigeria and Prospects for 21st Century Learners: Oluwafemi Adelabu¹; ¹Federal University of Technology, Akure

Virtually Teaching Materials Science Topics in 20 Minutes: Kaitlin Tyler; Alfred Oti¹; ¹Ansys

Introduction to Materials Science and Engineering: an Online Course from a Student's Perspective: Joseph Foster¹; Subhadra Gupta¹; University of Alabama

Optimum Design of Railcar Truck Stand: *Balin Shrivastava*¹; Akhil Gone¹; Krishna Medishetty¹; Raghu Echempati¹; ¹Kettering University

FUNDAMENTALS AND CHARACTERIZATION

Deformation-induced Phase Transformations — On-Demand Oral Presentations

Program Organizers: Yangyang Zhao, Purdue University; Jonah Klemm-Toole, Colorado School of Mines; Amy Clarke, Colorado School of Mines; Janelle Wharry, Purdue University

Friday AM | October 22, 2021 On-Demand Room 7 | MS&T On Demand

Engineering Microstructures for Conventionally and Additively Manufactured Ni-based Superalloys: Felix Theska¹; Nima Haghdadi¹; Sophie Primiq¹; ¹UNSW Sydney

Influence of 3D Microstructure on Deformation-induced Martensitic Transformation Studied by In Situ High-energy Diffraction Microscopy and Crystal Plasticity Modeling: *Ye Tian¹*; Xiaohui Tu¹; He Liu²; Ming Guan¹; Peter Kenesei³; Jun-Sang Park³; Robert Suter²; Todd Hufnagel¹; ¹Johns Hopkins University; ²Carnegie Mellon University; ³Argonne National Laboratory

FUNDAMENTALS AND CHARACTERIZATION

Deformation-induced Phase Transformations — On-Demand Poster Presentations

Program Organizers: Yangyang Zhao, Purdue University; Jonah Klemm-Toole, Colorado School of Mines; Amy Clarke, Colorado School of Mines; Janelle Wharry, Purdue University

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Wire Size Effect on the Nucleation of Fatigue Cracks Near Nonmetallic Inclusions in Superelastic Nitinol: Parisa Shabani Nezhad¹; Jacob Rusch¹; John Moore¹; Dinc Erdeniz²; ¹Marquette University; ²University of Cincinnati

PROCESSING AND MANUFACTURING

Development of Light Weight Alloys and Composites — On-Demand Oral Presentations

Program Organizers: Ramasis Goswami, Naval Research Laboratory; Nikhil Gupta, New York University; Tanjore Jayaraman, University of Michigan-Dearborn; Aashish Rohatgi, Pacific Northwest National Laboratory

Friday AM | October 22, 2021 On-Demand Room 12 | MS&T On Demand

Invited

Surge for Design and Development of Low-density High Entropy Alloys and Composites: Nandini Singh¹; Yagnesh Shadangi¹; Vivek Kumar Pandey¹; Vikas Shivam¹; *Nilay Mukhopadhyay*¹; ¹Indian institute of Technology (BHU) Varanasi

Grain Boundary Relaxation in Nanocrystalline Aluminum: *Leslie Mushongera*¹; Wenye Ye¹; Jake Hohl¹; Pradeep Menezes¹; Mano Misra¹; ¹University of Nevada Reno

Effect of Copper Contents on Corrosion of High Performance ACMZ Cast Aluminum Alloys: *Jiheon Jun*¹; Amit Shyam¹; J. Allen Haynes¹; Yi Feng Su¹; ¹Oak Ridge National Laboratory Invited

Precipitation of Stable Icosahedral Quasicrystalline Phase in Mg-Al-Zn Alloys: Alok Singh¹; Takanobu Hiroto¹; Machiko Ode¹; Karel Tesar²; Hidetoshi Somekawa¹; Toru Hara¹; ¹National Institute for Materials Science; ²Czech Technical University in Prague

Coarsening of Strengthening Phases in Al(Cu) Alloys: Correlated Atomic-Resolution Microscopy and Composition Analysis: *Ujjval Bansal*¹; Mahander Singh¹; Shyam Sinha¹; Sukla Mondol²; Kamanio Chattopadhyay¹; ¹Indian Institute of Science; ²NIT Warangal

IRON AND STEEL (FERROUS ALLOYS)

Developments in Plate and Line Pipe Steels — On-Demand Oral Presentations

Sponsored by: AIST Metallurgy—Processing, Products and Applications Technology Committee

Program Organizers: Daniel Baker, General Motors Corporation; Ashish Singh, Nucor Steel Arkansas; Pello Uranga, CEIT and TECNUN (University of Navarra)

Friday AM | October 22, 2021 On-Demand Room 8 | MS&T On Demand

Optimization of Strength and Toughness for Hot-forged Bainitic Medium Carbon Steel using RSM: Iman El Mahallawi¹; Tamer Mohamed²; Abdelwahab Hussein²; Ahmed Shash³; Taha Mattar⁴; ¹Cairo University/ Adjunct The British University in Egypt; ²The British University in Egypt; ³Cairo University/ seconded German University in Cairo; ⁴Central Metallurgical Research and Development Institute (CMRDI)

FUNDAMENTALS AND CHARACTERIZATION

Emergent Materials under Extremes and Decisive <I>In Situ</I> Characterizations — On-Demand Oral Presentations

Sponsored by: ACerS Basic Science Division

Program Organizers: Hongwu Xu, Los Alamos National Laboratory; Xiaofeng Guo, Washington State University; Xujie Lu, Center for High Pressure Science & Technology Advanced Research; Hua Zhou, Argonne National Laboratory; Judith Driscoll, University of Cambridge

Friday AM | October 22, 2021 On-Demand Room 7 | MS&T On Demand

Session Chairs: Xiaofeng Guo, WSU; Hua Zhou, ANL; Hongwu Xu, I ANI

Invited

Nanomechanic Characterizations with Diamond-Anvil Cell Techniques: Bin Chen¹; Xiaoling Zhou²; Jianing Xu²; Hongliang Dong¹; Yanju Wang¹; Zongqiang Feng³; Xiaoxu Huang³; ¹Center for High Pressure Science and Technology Advanced Research; ²Harbin Institute of Technology; ³Chongqing University

Invited

Nanoparticles Under High Pressure: Assembly and Formation of Active Nanostructures: Hongyou Fan¹; ¹Sandia National Labs

Invited

Novel Properties in Cuprates Prepared by High Pressure Oxygen Synthesis: Steven Conradson¹; ¹Jozef Stefan Institute

Invited

Structure and Composition of Novel Nitride Materials Synthesized at Extreme Conditions of High Pressure and High Temperature Determined by Single-crystal X-ray Diffraction and Raman Spectroscopy: Alexander Goncharov¹; ¹Earth and Planets Laboratory, Carnegie Institution for Science

New Approach Toward Enhanced Understanding of the Phase Transformation in Anodically Formed Titanium Oxide Nanotubes during Annealing: Hammad Malik¹; Brian Devener¹; Jerry Howard¹; Swomitra Mohanty¹; Krista Carlson¹; ¹University of Utah

Far-From-Equilibrium Processing of Materials under Extreme Conditions: Eric O'Quinn¹; Alexandre Solomon¹; Casey Corbridge¹; Antonio Fuentes²; Maik Lang¹; ¹University of Tennessee; ²Cinvestav Unidad Saltillo

Photoindentation: A New Route to Understanding Dislocation Behavior in Light: Atsutomo Nakamura¹; *Xufei Fang*²; Ayaka Matsubara¹; Eita Tochigi³; Yu Oshima¹; Tatsushi Saito¹; Tatsuya Yokoi¹; Yuichi Ikuhara³; Katsuyuki Matsunaga¹; ¹Nagoya University; ²Technische Universität Darmstadt; ³The University of Tokyo

Investigation of Kirkendall Pore Formation and Evolution Using 4D Spatio-Temporal X-ray Tomography and Deep Learning: *Arun Bhattacharjee*¹; Pradyumna Elavarthi¹; Anca Ralescu¹; Ashley Paz y Puente¹; ¹University of Cincinnati

ENERGY

Energy Materials for Sustainable Development — On Demand Energy Harvesting

Sponsored by: ACerS Energy Materials and Systems Division

Program Organizers: Armin Feldhoff, Leibniz University Hannover; Kyle Brinkman, Clemson University; Krista Carlson, University of Utah; Eva Hemmer, University of Ottawa; Nikola Kanas, Institute Biosense, University of Novi Sad; Kjell Wiik, Norwegian University of Science and Technology; Lei Zuo, Virginia Tech; Stephanie Lee, Stevens Institute of Technology; Muhammad Hajj, Stevens Institute of Technology

Friday AM | October 22, 2021 On-Demand Room 6 | MS&T On Demand

Invited

Controlling Conductivity in Ferroelectric Oxides at the Nanoscale: *Dennis Meier*¹; ¹Norwegian University of Science and Technology, NTNU

Invited

Domain-wall Contribution to Weak-field Properties of Lead-based Relaxor Ferroelectrics: *Tadej Rojac*¹; Mirela Dragomir¹; Mojca Otonicar¹; ¹Jozef Stefan Institute

Invited

Multifunctional Complex Oxide Heterostructures: Nini Pryds¹; ¹Technical University of Denmark

Invited

Structure-Photophysics-Function Relationship of Perovskite Solar Cells: He Wang¹; ¹University of Miami

Invited

Glasses as Energy Materials for a Sustainable Development: Monica Ferraris¹; Milena Salvo¹; Federico Smeacetto¹; ¹Politecnico di Torino - Italy

Invited

Strategies for Enhancement of Energy Storage in Pb-free Ferroic Ceramics for Sustainable Development: Ge Wang¹; Zhilun Lu¹; Dawei Wang²; Antonio Feteira³; Ian Reaney¹; ¹University of Sheffield; ²Shenzhen Institutes of Advanced Technology; ³Sheffield Hallam University

Invited

Proton Transport in the Ba_{o.8}Ca_{o.2}NdInO₄ Mixed Oxide Ion Conductor: Stephen Skinner¹; Yu Zhou¹; ¹Imperial College London

Invited

Opto-electric, Opto-mechanical and Opto-thermo-electric Control of Ferroelectric Domains for Multi-source Energy Harvesting and Sensing: Yang Bai²; ¹University of Oulu

Invited

rocessing of Transparent and Luminescent Alumina Polycrystalline Ceramics Doped with Various Rare Earth Elements and Transition Metals: Karel Maca¹; Katarina Drdlikova¹; Daniel Drdlik¹; Robert Klement²; Dusan Galusek²; ¹CEITEC VUT; ²TnUAD

Invited

Charge Extraction by Linearly Increasing Voltage (CELIV): From One-data Point Measurement to Mobility Mapping in Solar Energy Materials: *Giovanni Fanchini*¹; Noah Stocek¹; Miguel Young¹; Tianhao Ouyang¹; Reg Bauld¹; ¹University of Western Ontario

Experimental and Computational Investigations of the Multiple Impurities Effect on the SOFC Cathode Materials: Rui Wang¹; Lucas Parent¹; *Yu Zhong*¹; ¹Worcester Polytechnic Institute

The Electrical Conductivity and Defect Chemistry of Co, Sc-doped BaZrO₃: *Hiroki Uehara*¹; Akihiro Ishii¹; Itaru Oikawa¹; Hitoshi Takamura¹; ¹Tohoku University

Enhanced Conductivity Aluminum Composites for Electric Grid Applications: Aditya Nittala¹; Lloyd Furuta²; Kashi Subedi²; Xiao Li¹; WoongJo Choi¹; David Drabold²; Alex Poznak³; Frank Kraft²; Keerti Kappagantula¹; ¹Pacific Northwest National Laboratory; ²Ohio University; ³Hydro Innovation & Technology

ENERGY

Energy Materials for Sustainable Development — On Demand Storage and Conversion

Sponsored by: ACerS Energy Materials and Systems Division

Program Organizers: Armin Feldhoff, Leibniz University Hannover; Kyle Brinkman, Clemson University; Krista Carlson, University of Utah; Eva Hemmer, University of Ottawa; Nikola Kanas, Institute Biosense, University of Novi Sad; Kjell Wiik, Norwegian University of Science and Technology; Lei Zuo, Virginia Tech; Stephanie Lee, Stevens Institute of Technology; Muhammad Hajj, Stevens Institute of Technology

Friday AM | October 22, 2021 On-Demand Room 6 | MS&T On Demand

Kevnote

Lessons Learned from Materials Enriching Sustainable Energy Storage Solutions: Ekaterina Pomerantseva¹; ¹Drexel University

Invited

Advancing Lithium Batteries: An Interdisciplinary Approach: Nils Peter Wagner¹; ¹SINTEF

Invited

Solid State Batteries – from Interfaces to High Energy Density: *Jihui Yang*¹; ¹University of Washington

Invited

Electronic Doping of Semiconductor Thermoelectric Nanostructures with Isoelectronic Dopants: *Ayaskanta Sahu*¹, ¹New York University Invited

Complex Phase Transformations Observed in Na Storage Materials: Jae Chul Kim¹; ¹Stevens Institute of Technology

Invited

Half-Heusler Alloys: Promising Materials For Mid-To-High Temperature Thermoelectric Conversion: Joseph Poon¹; Mousumi Mitra¹; Peter Thomas²; Kai Yang²; ¹University of Virginia; ²Novus Energy Technologies

Invited

Recovery of Lithium from Geothermal Brines and Minerals: Mariappan Paranthaman¹; ¹Oak Ridge National Laboratory

Invited

Recent Advances and Material Challenges in Up-scaling SOEC: Peter Hendriksen¹; ¹Technical University of Denmark

Invited

Multifunctional Materials for Solar Technologies: Federico Rosei¹; ¹INRS Centre for Energy, Materials and Telecommunications

Synthesis and Performance Evaluation of Nano TiO2 (Anatase) Dispersed on Ti3C2-Mxene as High-performance Anode for Lithiumion Batteries: *Hanan Tariq*¹; Abdul Shakoor¹; Jeffin Abraham¹; Siham Alqaradawi¹; Ramzan Kahraman¹; ¹Qatar University

Fabrication of Microstructurally Engineered Composite Electrodes for SOFC Applications through Additive Manufacturing: Edward Sabolsky¹; Joshua Tenney¹; Gunes Yakaboylu²; Jordan Conte²; Michael Jones²; Irene Fontana³; Katarzyna Sabolsky²; Harry Abernathy⁴; Gregory Hackett⁵; ¹US Department of Energy- National Energy Technology Laboratory; West Virginia University; ²West Virginia University; ³University of Genoa; ⁴US Department of Energy- National Energy Technology Laboratory; NETL Support Contractor; ⁵US Department of Energy- National Energy Technology Laboratory

Dense NASICON-type LAGP Ceramics with 2D MoS₂ Interlayer for All-solid-state Lithium Metal Batteries: Seung Jin Baek¹; Eunho Cha¹; Dong Gyu Kim¹; Do-Kyung Kim¹; ¹Korea Advanced Institute of Science & Technology

Au NPs-decorated CeO2-TiO2 for Efficient Photoassisted CO Preferential Oxidation: Elisa Moretti¹; Mojitaba Gilzad Kohan²; Antonia Infantes Molina³; Alberto Vomiero²; ¹Ca' Foscari University of Venice; ²Lulea University of Technology; ³University of Málaga

Nano-Catalyst Enhanced Solid Oxide Fuel Cell Anodes for Increased Stability within Hydrocarbon Containing Fuels: Saad Waseem¹; Edward Sabolsky¹; Katarzyna Sabolsky¹; Richard Hart²; Seunghyuck Hong²; ¹West Virginia University; ²GE Research

A Novel Bi-functional Oxygen Catalyst, NBRO, for Rechargeable Air Battery: Preparation, Characterization, and Catalytic Activity: Hayato Suzuki¹; Kentaro Kozasa¹; *Masatsugu Morimitsu*¹; ¹Doshisha University

Tuning the Thermoelectric Performance of CaMnO3-based Ceramics by Controlled Exsolution and Micro-structuring: Nikola Kanas¹; Benjamin Williamson²; Richard Hinterding³; Mari-Ann Einarsrud²; Sverre Selbach²; Armin Feldhoff³; Kjell Wiik²; ¹BioSense Institute; ²NTNU; ³Leibniz University

Effects of Processing Conditions on Hybrid Organic-Inorganic Solid Electrolytes: Vazrik Keshishian¹; John Kieffer¹; ¹Vazrik Keshishian

In-situ Precipitation Processing of High-ionic Conductivity LATP/PEO Solid Electrolyte for Lithium-ion Batteries: *Guangyu Wang¹*; John Kieffer¹; ¹University of Michigan

Transition-metal-mediated Thermal Stability of Spinel Cathode in Li-ion Battery by In Situ Neutron Scattering: *Yan Chen*¹; Ke An¹; ¹Oak Ridge National Laboratory

CERAMIC AND GLASS MATERIALS

Engineering Ceramics: Microstructure-Property-Performance Relations and Applications — On-Demand Mechanical Properties of Engineering Ceramics/Applications

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Young-Wook Kim, University of Seoul; Hua-Tay Lin, Guangdong University of Technology; Junichi Tatami, Yokohama National University

Friday AM | October 22, 2021 On-Demand Room 4 | MS&T On Demand

Session Chairs: Junichi Tatami, Yokohama National University; Eita Tochigi, University of Tokyo

Invited

In Situ and Atomic-scale Investigations of Mechanical Responses in Oxide Crystals: Eita Tochigi¹; ¹The University of Tokyo

Invited

Triboluminescence of AlN:Mn and CaAlSiN3:Eu Ceramics: *Junichi Tatami*¹; Kentaro Iwai¹; Motoyuki Iijima¹; ¹Yokohama National University

Strengthening and Toughening of Titanium Boride (TiB) Ceramic Material by Metallurgical Control of the Composition of Metallic Phase: Jun Du¹; K. S. Ravi Chandran¹; ¹University of Utah

Nonlinear Continuum Damage Model for Unidirectional Laminate Based Ceramic Matrix Composites: Craig Przybyla¹; Jean-François Maire²; Emmanuel Baranger³; Frédéric Laurin²; ¹Air Force Research Laboratory; ²Office National d'Etudes et de Recherches Aérospatiales (ONERA); ³ENS Paris-Saclay

Mechanical Properties of Nanocrystalline Ceramics: *Heonjune Ryou*¹; Kevin Anderson¹; John Drazin²; Edward Gorzkowski¹; Boris Feygelson¹; James Wollmershauser¹; ¹U.S. Naval Research Laboratory; ²Washington State University

TiB2-TiC Based Materials with Fine Microstructure and Improved Mechanical Properties: Zhezhen Fu¹; ¹University of Wisconsin Platteville

Atomistic Modelling of Dynamic Failure in Boron Carbide: Multi-scale Modeling for Materials Design: Junhao Chang¹; Benhour Amirian¹; Matthew Guziewski²; James Hogan¹; ¹University of Alberta; ²Army Research Laboratory

Characterization of Clay Ceramics from Areas Near to the Thar Desert, India: Towards Water Filtration Application: Sunil Duhan¹; Meraj Warsi¹; Himanchal Bharadwaj¹; Pankaj Jakhar¹; Amrita Nighojkar¹; Vinayak Shedekar²; Anand Plappally¹; ¹IITJ; ²The Ohio State University

CERAMIC AND GLASS MATERIALS

Engineering Ceramics: Microstructure-Property-Performance Relations and Applications — On-Demand Poster Presentations

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Young-Wook Kim, University of Seoul; Hua-Tay Lin, Guangdong University of Technology; Junichi Tatami, Yokohama National University

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Discrete Element Modeling of Machining Process for Thermal Barrier Coating: *Jian Zhang*¹; Dan Koo¹; Hye-Yeong Park²; Yeon-Gil Jung²; Jing Zhang¹; ¹Indiana University – Purdue University Indianapolis; ²Changwon National University

Engineering Mineral Porosity as a Method for Studying Weathering Rates In Water-rock Systems: William Taylor¹; *Brian Gorman*¹; Alexis Navarre-Sitchler¹; ¹Colorado School of Mines

Low Temperature Pressureless Sintering of Silicon Carbide Ceramics with Aluminum Nitride-Yttria-Ceria-Magnesia: Eun Seo Kang¹; Young-Wook Kim¹; ¹The University of Seoul

CERAMIC AND GLASS MATERIALS

Engineering Ceramics: Microstructure-Property-Performance Relations and Applications — On-Demand Processing-Property Relations

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Young-Wook Kim, University of Seoul; Hua-Tay Lin, Guangdong University of Technology; Junichi Tatami, Yokohama National University

Friday AM | October 22, 2021 On-Demand Room 4 | MS&T On Demand

Session Chairs: Tohru Suzuki, National Institute for Materials Science; Csaba Balazsi, Hungarian Academy of Sciences

Invited

Investigation and Fabrication of High Thermal Conductivity Silicon Nitride Ceramics: Hyun Min Lee¹; Jung Hoon Kong²; *Do-Kyung Kim*²; ¹Samsung Electromechanics; ²Korea Advanced Institute of Science & Technology

Invited

Nanocarbon Added Silicon Nitrides: Csaba Balazsi¹; Katalin Balazsi¹; ¹Centre for Energy Research, Eotvos Lorand Research Network, Hungary

Invited

Fabrication of Transparent Polycrystalline Ceramics by Colloidal Processing and SPS: *Tohru Suzuki*¹; ¹National Institute for Materials Science

In-Person Event: OCTOBER 17-20, 2021 • COLUMBUS, OHIO On-Demand Content available:

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

Mechanical, Thermal, and Electrical Properties of Pressureless Sintered SiC Ceramics with BN and C Additives: *Young-Wook Kim*¹; Rohit Malik¹; ¹University of Seoul

Relationship between the Microstructure and the Mechanical Properties of the MWCNTs Reinforced Potassium-based Metakaolin Alkali Activated Materials: *Jiaxin Chen*¹; Ange-Therese Akono¹; ¹Northwestern University

Control of Thermal, Electrical, and Mechanical Properties of Porous SiC Ceramics via Doping: Shynar Kultayeva¹; Young-Wook Kim¹; In-Hyuck Song²; ¹University of Seoul; ²Korea Institute of Materials Science

IRON AND STEEL (FERROUS ALLOYS)

Fracture of Steels: New Approaches to Modeling and Experimental Characterization — On-Demand Oral Presentations

Sponsored by: TMS Steels Committee

Program Organizers: Louis Hector, General Motors Global Technical Center; Ana Luiza Araujo, AK Steel Research & Innovation; Matthias Militzer, University of British Columbia; Amy Clarke, Colorado School of Mines

Friday AM | October 22, 2021 On-Demand Room 8 | MS&T On Demand

Keynote

Predicting the Influence of Microstructure on the Strength and Fracture Resistance of Advanced High Strength Steels: Allan Bower¹; ¹Brown University

ELECTRONIC AND MAGNETIC MATERIALS

Functional Defects in Electroceramic Materials — On-Demand Oral Presentations

Sponsored by: ACerS Electronics Division

Program Organizers: Hui Xiong, Boise State University; Hua Zhou, Argonne National Laboratory

Friday AM | October 22, 2021 On-Demand Room 5 | MS&T On Demand

Invited

Dislocation-based Nanomechanics in Functional Oxides: A Case Study on SrTiO3: Xufei Fang¹; Kuan Ding¹; Stephan Janocha¹; Christian Minnert¹; Till Frömling¹; Karsten Durst¹; Atsutomo Nakamura²; Jürgen Rödel¹; ¹Technische Universität Darmstadt; ²Nagoya University

Invited

Leveraging Structure and Energetics to Enhance Electrochemical Kinetics in Batteries: Kai He¹; ¹Clemson University

Invited

Modeling the Electrical Double Layer at Solid-state Electrochemical Interfaces: Yue Qi[†]; Michael Swift²; James Swift³; ¹Brown University; ²Michigan State University; ³Northern Arizona University

Invited

Defect-promoted Sulfur Cathode for Highly Stable Sodium-sulfur Batteries: *Weiyang Li*¹; ¹Dartmouth College

Invited

Irradiation-enhanced Electrochemical Performance of TiO2 Anode Material: Janelle Wharry¹; Chao Yang¹; Tristan Olsen²; Hui (Claire) Xiong²; Kassiopeia Smith³; Yongqiang Wang⁴; Khalid Hattar⁵; Yaqiao Wu²; Dmitri Tenne²; Sheng Cheng²; ¹Purdue University; ²Boise State University; ³National Institute of Standards and Technology; ⁴Los Alamos National Laboratory; ⁵Sandia National Laboratories

Dislocations as "Self-dopants" in Functional Oxides, Exemplified for TiO2: Qaisar Muhammad¹; Lukas Porz¹; Atsutomo Nakamura²; Katsuyuki Matsunaga²; Marcus Rohnke³; Jürgen Janek³; Till Frömling¹; Jürgen Rödel¹; ¹Technical University of Darmstadt; ²Nagoya University; ³Justus Liebig University

Ceramics Are Brittle. Can Dislocations Change That?: Lukas Porz¹; Arne Klomp¹; Xufei Fang¹; Ning Li²; Can Yildirim³; Carsten Detlefs³; Enrico Bruder¹; Marion Höfling¹; Wolfgang Rheinheimer⁴; Eric Patterson⁵; Peng Gao²; Karsten Durst¹; Atsutomo Nakamura⁵; Karsten Albe¹; Hugh Simons³; Jürgen Rödel¹; ¹Technical University of Darmstadt; ²Peking University; ³European Synchrotron Radiation Facility; ⁴Forschungszentrum Jülich; ⁵US Naval Research Laboratory; ⁵Osaka University; ¹Technical University of Denmark

CERAMIC AND GLASS MATERIALS

Glasses and Optical Materials: Current Issues and Functional Applications — On-Demand Oral Presentations

Sponsored by: ACerS Basic Science Division, ACerS Glass & Optical Materials Division

Program Organizers: Jessica Rimsza, Sandia National Laboratories; Delia Brauer, Otto Schott Institute of Materials Research

Friday AM | October 22, 2021 On-Demand Room 4 | MS&T On Demand

Invited

Fracture Toughness of Zeolitic Imidazolate Framework Glasses: *Morten Smedskjaer*¹; Theany To¹; Søren Sørensen¹; Tao Du¹; Yuanzheng Yue¹; Mathieu Bauchy²; ¹Aalborg University; ²University of California, Los Angeles

Viscoelastic Relaxation in Silica via Reactive Molecular Dynamic Simulations: Jessica Rimsza¹; Scott Grutzik¹; ¹Sandia National Laboratories

Growth Optimization of Single Crystal Fibers from Polycrystalline Source Rods Using Laser Heated Pedestal Methods: *Dolendra Karki*¹; Edward Clover Hoffman¹; Paul R. Ohodnicki¹; ¹University of Pittsburgh

Novel Oxide Glasses Via Non-traditional Processing: Adam Floyd¹; Vinh Nguyen²; Daniel Rhonehouse²; Robel Bekele³; Jason Myers²; Daniel Gibson²; Shyam Bayya²; Rick Kim²; Jesse Frantz²; Jasbinder Sanghera²; ¹Jacobs Technology, Inc; ²U.S. Naval Research Laboratory; ³University Research Foundation

Comparison of Spinel Produced by SPS and Traditional Pressing Techniques: Adam Floya¹; Noor Qadri²; Bryan Sadowski¹; Guillermo Villalobos²; Shyam Bayya²; Rick Kim²; Syed Qadri²; Jasbinder Sanghera²; ¹Jacobs Technology Inc.; ²U.S. Naval Research Laboratory

Glasses for Multiband Optics: *Daniel Gibson*¹; Vinh Nguyen²; Daniel Rhonehouse²; Adam Floyd²; Shyam Bayya²; Jasbinder Sanghera²; ¹563882; ²U.S. Naval Research Laboratory

Study of Silica Glass Structural Properties under Compression Shockwave Using Reactive Force Field: *Ashish Yadav*¹; Vaibhav Bihani¹; N.M. Anoop Krishnan¹; ¹Indian Institute of Technology (IIT), Delhi

Chalcogenides and Chalcopyrites; Growth of Multinary Cystals and Glasses for Lasers and Hyperspectral Imagers: Narsingh Singh; Ian Emge¹; Pooja Gautam²; Krishna Machuga¹; Fow-Sen Choa¹; Bradley Arnold¹; Lisa Kelly¹; Brian Cullum¹; Raghaw Rai³; ¹University of Maryland Baltimore County; ²Indian Institute of Technology, BHU; ³Applied Novel Devices Inc

FUNDAMENTALS AND CHARACTERIZATION

Grain Boundaries, Interfaces, and Surfaces in Ceramics: Fundamental Structure—Property— Performance Relationships — On-Demand Oral Presentations

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division

Program Organizers: Rheinheimer Wolfgang, Forschungszentrum Jülich; Catherine Bishop, University of Canterbury; Shen Dillon, University of California, Irvine; Ming Tang, Rice University; John Blendell, Purdue University; Wayne Kaplan, Technion - Israel Institute of Technology; Melissa Santala, Oregon State University

Friday AM | October 22, 2021 On-Demand Room 7 | MS&T On Demand

Invited

Interface Migration: From Grain Boundary Structure to Microstructure Evolution: David Srolovitz¹; Jian Han¹; Marco Salvalaglio²; ¹City University of Hong Kong; ²TU Dresden

Invited

Triggering the Catalytic Activity of SrTiO3-based Ceramics by Electric-field-assisted Treatments: Simone Mascotto¹; ¹University of Hamburg

Invited

Abnormal Grain Growth in Nanocrystalline PdAu: The Case of the Fractal Fingerprint: Raphael Zeller¹; Markus Fischer¹; Christian Braun²; Mingyan Wang¹; Rainer Birringer²; Carl Krill III¹; ¹Ulm University; ²Saarland University

Invited

Fast Grain-boundary Diffusion in Oxides: Roger De Souza¹; ¹RWTH Aachen University

Invited

Influence of Planar Defects on the Electrochemical Cycling and Diffusion of Li in Li $_{\rm x}$ Mn $_{\rm 2}$ O $_{\rm 4}$: Torben Erichsen $^{\rm 1}$; Cynthia Volkert $^{\rm 1}$; $^{\rm 1}$ University of Goettingen

On the Role of Plasticity in High Heating Rate Sintering: Does Flash Sintering Involve Plastic Flow?: Rheinheimer Wolfgang¹; Xin Phuah²; Lukas Porz³; Michael Scherer³; Jaehun Cho²; Haiyan Wang²; ¹Forschungszentrum Jülich; ²Purdue University; ³TU Darmstadt

3-D Quantification of Grain Boundary Defect Chemistry Using TEM + APT: *Brian Gorman*¹; ¹Colorado School of Mines

Geometrical Asymmetry Enabled Low Field Nucleation and Manipulation of Skyrmion at Magnetic Domain Boundaries in a Centro-symmetric Magnet: Binbin Wang¹; Po-kuan Wu¹; Nuria Bagues¹; Qiang Zheng²; Jiaqiang Yan²; Mohit Randeria¹; David McComb¹; ¹The Ohio State University; ²Oak Ridge National Laboratory

Dislocation and Grain Boundary Interaction in Oxides: Slip Transmission or Cracking?: Kuan Ding¹; Wolfgang Rheinheimer²; Wenzhen Xia³; Christian Dietz¹; Enrico Bruder¹; Karsten Durst¹; Atsutomo Nakamura⁴; Xufei Fang¹; ¹TU Darmstadt; ²Forschungszentrum Jülich; ³Max-Planck-Institut für Eisenforschung; ⁴Nagoya University

FUNDAMENTALS AND CHARACTERIZATION

High Entropy Materials: Concentrated Solid Solutions, Intermetallics, Ceramics, Functional Materials and Beyond II — On-Demand Oral Presentations

Sponsored by: TMS Alloy Phases Committee, TMS Mechanical Behavior of Materials Committee

Program Organizers: Michael Gao, National Energy Technology Laboratory; Xingbo Liu, West Virginia University; Peter Liaw, University of Tennessee; Jian Luo, University of California, San Diego; Yiquan Wu, Alfred University; Yu Zhong, Worcester Polytechnic Institute; Mitra Taheri, Johns Hopkins University; Amy Clarke, Colorado School of Mines

Friday AM | October 22, 2021 On-Demand Room 7 | MS&T On Demand

Keynote

Recreate New Life of the Periodic Table: High-entropy Alloys: *Jien-Wei Yeh*¹; ¹National Tsing Hua University

Invited

Oxidation Behavior of Concentrated Refractory Alloys: *Todd Butler*¹; Tinuade Daboiku¹; Oleg Senkov¹; ¹Air Force Research Laboratory

Invited

The Role of Composition and Static Displacements on Phase Stability of BCC High Entropy Alloys: German Samolyuk¹; Yuri Osetsky¹; Malcolm Stocks¹; James Morris²; ¹Oak Ridge National Lab; ²Ames Laboratory

Invited

Designing High-entropy Intermetallics: Machine Learning Models and Validation: Joseph Poon¹; Jie Qi¹; ¹University of Virginia

Invited

Enhanced Oxidation Resistance of (Mo95W5)85Ta10(TiZr)5 Refractory Metal Multi-principal Element Alloy Up to 1300°C: Ranran Su¹; Hongliang Zhang²; Gaoyuan Ouyang³; Longfei Liu²; Jun Cui³; Duane Johnson³; John Perepezko²; ¹University of Wisconsin-Madison; ²Department of Materials Science and Engineering, University of Wisconsin-Madison; ³Ames Laboratory, U.S. Department of Energy at Iowa State University

Invited

Ultrahigh-strength and Ductile High-entropy Alloys with Coherent Nano-lamellar Architectures: *Zengbao Jiao*¹; ¹The Hong Kong Polytechnic University

Invited

Exploring the Chemical and Structural Phase Space of High Entropy Alloys with Ab Initio Calculations and Machine Learning Potentials: Fritz Koermann¹; ¹Tu Delft

Invited

Local Ordering and Defect Evolution in Body-centered Cubic (BCC) Multi-principal Element Alloys: Shijun Zhao¹; ¹City University of Hong Kong

Invited

FeNiMnAl(Cr) Multi-principal Component Alloys: *Ian Baker*¹; ¹Dartmouth College

Invited

Creep Performance of Various Single Phase FCC CoCrFeNi Family of High Entropy Alloys: Kyle Rozman¹; Martin Detrois¹; Paul Jablonski¹; Michael Gao¹; Jeffery Hawk¹; ¹National Energy Technology Laboratory

Invited

Microstructure and Mechanical Properties of Hf-27Ta and Hf-21Ta-21X (X is Nb, Mo or W) Alloys: Oleg Senkov¹; Tinuade Daboiku¹; Todd Butler¹; Michael Titus²; Noah Philips³; Eric Payton¹; ¹Air Force Research Laboratory; ²Purdue University; ³ATI Specialty Alloys and Components

Invited

Tuning Mechanical Metastability in FeMnCo Medium Entropy Alloys: S.L. Wei¹; M. Xu¹; James LeBeau¹; C. Tasan¹; ¹Massachusetts Institute of Technology

Invited

Ab Initio Modeling on the Elastic Properties of Al-Co-Cr-Fe-Ni High Entropy Alloys: A Case Study with FCC Phase: Songge Yang¹; Yu Zhong¹; ¹Worcester Polytechnic Institute

Invited

Theories for Predicting Simple Solid Solution High-entropy Alloys: Classification, Accuracy, and Important Factors Impacting Accuracy: Jian-Hong Li¹; *Ming-Hung Tsai*¹; An-Chen Fan¹; ¹National Chung Hsing University

Thermal Conductivity Reduction in (Zr_{0.25}Ta_{0.25}Nb_{0.25}Ti_{0.25})C High Entropy Carbide from Extrinsic Lattice Defects: Cody Dennett¹; Fei Wang²; Bai Cui²; ¹Idaho National Laboratory; ²University of Nebraska-Lincoln

Interstitial Induced Transformations in Nb-Ti Alloys: Ravit Silverstein¹; Anirudh Natarajan¹; Raphaële Clément¹; Anton Van der Ven¹; Carlos Levi¹; ¹University of California, Santa Barbara

A Novel Soft-magnetic Single-phase B2-ordered Multi-principal Element Alloy: Youxiong Ye¹; Scott Lish¹; Liubin Xu²; Markus Wittmann²; Haixuan Xu²; Ian Baker¹; ¹Dartmouth College; ²Department of Materials Science and Engineering

Deformation of Refractory Multi-principal Element Alloy Nanowires: *Shuozhi Xu*¹; Yanqing Su²; ¹University of California, Santa Barbara; ²Utah State University

Understanding the Nature of Passivation Film of a TRIP Fe39Mn2OCo2OCr15Si5Al1 (at.%) High Entropy Alloy in 3.5 wt.% NaCl Solution: Pranshul Varshney¹; Nilesh Kumar¹; ¹University of Alabama-Tusaloosa

ENERGY

Hybrid Organic—Inorganic Materials for Alternative Energy — On-Demand Hybrid Organic—Inorganic Materials for Alternative Energy

Sponsored by: ACerS Basic Science Division, ACerS Energy Materials and Systems Division, ACerS Glass & Optical Materials Division

Program Organizers: Andrei Jitianu, Lehman College, City University of New York; Lisa Klein, Rutgers University; Lia Stanciu, Purdue University; Mihaela Jitianu, William Paterson University

Friday AM | October 22, 2021 On-Demand Room 6 | MS&T On Demand

Invited

Challenges and Opportunities of Polymer Nanodielectrics for Electric Energy Storage: Lei Zhu¹; ¹Case Western Reserve University

Invited

Proton-conducting Oxides for Energy Conversion: Chuancheng Duan¹; ¹Kansas State University

Application of Hybrid Photoanode Structures in Dye Sensitized Solar Cells (DSSCs): Pawel Jarka¹; Tomasz Tanski¹; Wiktor Matysiak¹; Aleksandra Drygala¹; ¹Silesian University of Technology

Invited

Grain Boundary Passivation for Enhancing Stability of Hybrid Perovskite Solar Cells: Chang-Yong Nam¹; ¹Brookhaven National Laboratory

Invited

Oxide Nanosheets in Hybrid Structures: *Alp Sehirlioglu*¹; Kevin Pachuta¹; Maria Escamilla²; Katelynn Edgehouse¹; Emily Pentzer²; ¹Case Western Reserve University; ²Texas A&M

Invited

Translational Research in Energy Storage: Opportunities for Flow Battery Science: James McKone¹; Tejal Sawant¹; Becca Segel¹; Zachary Parr¹; Carissa Yim¹; Thomas Henry¹; ¹University of Pittsburgh

Enhancement of Viscoelastic Properties of MR-elastomer by Iron Particle Chain Structures for Adaptive Vibration Control: Narongdet Sulatchaneenopdon¹; Hyoung-Won Son¹; Anak Khantachawana²; Jon García-Barruetabeña³; María Jesús Elejabarrieta³; Tsutomu Takahashi¹; Hisayuki Suematsu¹; Koichi Niihara¹; Tadachika Nakayama¹; ¹Nagaoka University of Technology; ²King Mongkut's University of Technology; ³University of Deusto

FUNDAMENTALS AND CHARACTERIZATION

Integration between Modeling and Experiments for Crystalline Metals: From Atomistic to Macroscopic Scales III — On-Demand Oral Session I

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Levente Balogh, Queen's University; Caizhi Zhou, University of South Carolina; Lei Cao, University of Nevada; Josh Kacher, Georgia Institute of Technology

Friday AM | October 22, 2021 On-Demand Room 7 | MS&T On Demand

Session Chairs: Jon Molina-Aldareguia, Imdea Materials Institute; M Arul Kumar, Los Alamos National Laboratory

Invited

Yield Point Phenomena in Single Crystal BCC and FCC Metals: David Fullwood¹; Josh Tsai¹; Tristan Russell¹; Guowei Zhou²; Robert Wagoner³; Eric Homer¹; ¹Brigham Young University; ²Shanghai Jiao Tong University; ³Ohio State University

Two-scale Simulation of Plastic eformation in BCC Metals: Combination of Atomistic Simulation and Dislocation Dynamics: Sergei Starikov¹; Vasily Tseplyaev²; Matous Mrovec¹; ¹ICAMS, Ruhr University Bochum; ²Grunberg Institut and Institute for Advanced Simulation

Transformation-induced Plasticity in Omega Titanium: Amir Hassan Zahiri¹; Jamie Ombogo¹; Tengfei Ma¹; Pranay Chakraborty¹; Lei Cao¹; ¹Universitiy Of Nevada Reno

Combining DICTRA Simulations with In-situ TEM Experiments to Optimize Metallic Powder Heat Treatments: Kyle Tsaknopoulos¹; Matthew Gleason¹; Grace Fitzpatrick-Schmidt¹; Danielle Cote¹; ¹Worcester Polytechnic Institute

Interactions between Dislocations and 3D Interfaces in a Cu/Nb System: Shuozhi Xu¹; Justin Cheng²; Zezhou Li²; Nathan Mara²; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²University of Minnesota, Twin Cities

Automated Laue Pattern Analysis for Bragg Coherent Diffraction Imaging: Yueheng Zhang¹; Anthony Rollett¹; Robert Suter¹; ¹Carnegie Mellon University

FUNDAMENTALS AND CHARACTERIZATION

Integration between Modeling and Experiments for Crystalline Metals: From Atomistic to Macroscopic Scales III — On-Demand Oral Session II

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Levente Balogh, Queen's University; Caizhi Zhou, University of South Carolina; Lei Cao, University of Nevada; Josh Kacher, Georgia Institute of Technology

Friday AM | October 22, 2021 On-Demand Room 7 | MS&T On Demand

Session Chairs: Deep Choudhuri, New Mexico Institute of Mining and Technology; D Biswas, IIT Kharagpur

Invited

Extension Twin Induced Strain Hardening and Texture Evolution in AM30 Alloy: Experiments and Crystal Plasticity Modelling: Somjeet Biswas¹; ¹India Institute of Technology Kharagpur

Invited

An Integrated Numerical Approach to Investigate the Effect of Grainscale Heterogeneities on the Anisotropy of Polycrystalline Metals: Kyung Mun Min¹; Hyukjae Lee¹; Heung Nam Han¹; Myoung-Gyu Lee¹; ¹Seoul National University

Invited

Deformation of Lamellar FCC-B2 Nanostructures Containing Kurdjumov-Sachs Interfaces: Relation between Interfacial Structure and Plasticity: Deep Choudhuri²; Srivilliputhur Srinivasan²; Rajiv Mishra²; New Mexico Institute of Mining and Technology; ²University of North Texas

Modeling the Composition of Primary Carbides in the System Ni-11.5Cr-5Co-3.6Al-4.5Ti-7W-0.8Mo-0.06C: Alexander Glotka¹; ¹Zaporizhzhia Polytechnic National University

A Microstructural Model for Creep-fatigue Damage in Grade 91 Steel: Ajey Venkataraman¹; Andrea Rovinelli¹; Mark Messner¹; ¹Argonne National Laboratory

Design of an Austenitic Steel Weldment System Using ICME: Daniel Bechetti¹; Paul Lambert¹; Matthew Sinfield¹; Charles Fisher¹; ¹Naval Surface Warfare Center, Carderock Division

Phase-field Simulations of Translation of Grains in Strain-energy-driven Grain Growth: *Guanglong Huang*¹; David Montiel¹; Matthew Higgins¹; Jiwoong Kang¹; Ning Lu¹; Ashwin Shahani¹; Katsuyo Thornton¹; ¹University of Michigan

SPECIAL TOPICS

Late News Poster Session — On-Demand Additive Manufacturing Poster Session

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Fabrication of Doped ß-tricalcium Phosphate Bioceramics by Robocasting for Bone Repair Applications: Nicolas Somers¹; Florian Jean¹; Marie Lasgorceix¹; Anthony Thuault¹; Fabrice Petit²; Sandra Balvay³; Christelle Der Loughian³; Claire Gaillard³; Laurent Gremillard³; Anne Leriche¹; ¹LMCPA/UPHF; ²Belgian Ceramic Research Center; ³12B/Mateis-INSA Lyon

Hybrid Additive/Subtractive System of Ceramic Materials: Investigation of Powder, Process and Innovative Post-treatments: *Qirong Chen*¹; Enrique Juste¹; Marie Lasgorceix²; Fabrice Petit¹; Anne Leriche²; ¹Belgium Ceramic Research Centre; ²Laboratoire des Matériaux Céramiques et Procédés Associés

Scanning Strategies Investigation for Powder Bed Selective Laser Processing of Alumina: Mohamed Abdelmoula¹; Giovanni Urruth²; Gökhan Küçüktürk¹; Enrique Juste³; Fabrice Petit³; ¹Gazi Univeristy; ²Marion Technologies; ³Belgium Ceramic Reserach Center

Texture Evolution during the High Temperature Heat Treatment of Additively Manufactured IN718: Selda Nayir¹; Bertrand Max²; Simon Perusin²; Todd Palmer¹; ¹Pennsylvania State University; ²IRT Saint Exupéry, Institut de Recherche Technologique

SPECIAL TOPICS

Late News Poster Session — On-Demand Artificial Intelligence Poster Session

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

LSTM Model to Predict Low-cycle Fatigue in IN718: Jacob Keesler-Evans¹; Ansan Pokharel¹; Terence Musho¹; ¹West Virginia University

SPECIAL TOPICS

Late News Poster Session — On-Demand Fundamentals and Characterization Poster Session

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Extrinsic Size Effects on Fracture Behaviour of Copper: Hrushikesh Sahasrabuddhe¹; Anirban Patra¹; Nagamani Jaya Balila¹; ¹India Institute of Technology Bombay

Microstructural Conditioning to Reveal Prior Austenitic Grain Using the Oxidation Method: David Fernandez-Sanchez¹; Alexis Gallegos-Perez¹; Octavio Vázquez-Gómez¹; Pedro Garnica-Gonzalez¹; Hector Vergara-Hernandez¹; Antonio Oliver-Reynoso²; ¹Tecnológico Nacional de México / I.T. Morelia; ²Tecnológico Nacional de México / I.T. Morelia

Nanoindentation studies on Friction Stir Processed Dual Phase High Entropy Alloy: Neelam Meena¹; Gourav Rao²; Nithyanand Prabhu¹; ¹IIT BOMBAY; ²Naval Materials Research Labroatory

PROCESSING AND MANUFACTURING

Light Metal Technology — On-Demand Oral Presentations

Sponsored by: TMS Titanium Committee

Program Organizers: Xiaoming Wang, Purdue University; Yufeng Zheng, University of Nevada-Reno

Friday AM | October 22, 2021 On-Demand Room 12 | MS&T On Demand

Surface Modification of Steel Shells to Reduce the Use of Release Agents in Twin Roll Casting of Aluminum Alloys: Martin Lauth¹; Alexander Nienhaus²; Hanno Paschke³; Mirko Schaper¹; Olexandr Grydin¹; ¹University of Paderborn; ²TU Braunschweig; ³Fraunhofer Institute

EPSC Model with Back Stress Development to Capture Multi-strainpath Behavior of AA6016-T4: Rishabh Sharma¹; Dane Sargeant¹; Sowmya Daroju²; Marko Kenezevic²; Michael Miles¹; David Fullwood¹; ¹Brigham Young University; ²University of New Hampshire

In-situ Observation the Growth of Fe-rich Phases during Al Alloys Solidification: *Yuliang Zhao*¹; ¹Dongguan University of Technology

CERAMIC AND GLASS MATERIALS

Manufacturing and Processing of Advanced Ceramic Materials — On-Demand Advanced Manufacturing Process of Ceramics

Sponsored by: ACerS Manufacturing Division

Program Organizers: Bai Cui, University of Nebraska-Lincoln; James Hemrick, Oak Ridge National Laboratory; Mike Alexander, Allied Mineral Products; Eric Faierson, Quad City Manufacturing Laboratory/ Western Illinois University; Keith DeCarlo, Blasch Precision Ceramics

Friday AM | October 22, 2021 On-Demand Room 4 | MS&T On Demand

Session Chairs: Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology; Bai Cui, University of Nebraska-Lincoln

Invited

The Future of Manufacturing in Energy-intensive Industries: William Lee¹; Michael Rushton¹; Simon Middleburgh¹; Phylis Makurunje¹; Bangor University

Invited

Making Pre-stressed Ceramics with High Strength and High Damage Tolerance: Yiwang Bao¹; Fenghua Kuang¹; Yi Sun²; Yueming Li²; Detian Wan¹; Zongyang Shen²; Delong Ma¹; *Lingfeng He*³; ¹China Building Materials Academy; ²Jingdezhen Ceramic Institute; ³Idaho National Laboratory

Invited

Progress of Silicon Nitride: Processing, Structure and Property: *Tatsuki Ohji*¹; You Zhou¹; Hiroyuki Miyazaki¹; Hideki Hyuga¹; Kiyoshi Hirao¹; ¹National Institute of Advanced Industrial Science and Technology

Invited

Issues Related to the Manufacturing and Processing of Refractory Ceramic Materials: James Hemrick¹; ¹Oak Ridge National Laboratory

Comparison of Microstructural Evolution of Hydroxyapatite Powder Sintered by Microwave, SPS and Conventional Sintering: Anne Leriche¹; Pierre Lefeuvre¹; Vedi Dupont²; Diana Vitiello³; Hamza Karouiti³; Anthony Thuault¹; David Smith³; Stéphane Hocquet²; ¹UPHF-LMCPA; ²BCRC; ³IRCER Limoges

Luminescence Thermometry - Striving a Breakthrough: *Eugeniusz Zych*¹; Paulina Bolek¹; Malgorzata Sójka¹; Dagmara Kulesza¹; Joanna Trojan-Piegza¹; ¹University of Wroclaw

Leveraging Computational Thermodynamics for Guiding SiC-ZrC Chemical Vapor Deposition Process Development: Benjamin Lamm¹; Jian Peng²; Jake McMurray²; Dongwon Shin²; David Mitchell²; ¹Oak Ridge National Laboratory; ²Materials Science and Technology Division, Oak Ridge National Laboratory

Selective Laser Sintering of Hexagonal Barium Titanate Ceramics: Xiang Zhang¹; Fei Wang¹; Zhipeng Wu¹; Yongfeng Lu¹; Yan Chen²; Michael Nastasi³; *Bai Cui*¹; ¹University of Nebraska-Lincoln; ²Oak Ridge National Laboratory; ³Texas A&M University

Chemical Vapor Deposition of Zirconium-silicon-carbon Compositions: David Mitchell¹; Benjamin Lamm¹; Michael Lance¹; Kevin Cooley¹; Ercan Cakmak¹; Todd Groff¹; ¹Oak Ridge National Laboratory

A Novel Room-temperature Synthesis Technique for Producing Highdensity Electroceramic Composites: Evan Smith¹; Rick Ubic¹; ¹Boise State University

Aqueous Colloidal Processing of WC Based Materials with Alternative Metals as Sintering Aids or Binder: Antonio Javier Sanchez-Herencia¹; Macarena Garcia-Ayala¹; Begoña Ferrari¹; Jose Ygnacio Pastor²; ¹Institute for Ceramic and Glass; ²ETSI Caminos-UPM

Spark Plasma Joining of HfB2-ZrB2-SiC Composites Using Ni as a Filler: Shipra Bajpai¹; Alok Bhadauria¹; T. Venkateswaran²; Sudhanshu Singh¹; Kantesh Balani¹; ¹Indian Institute of Technology Kanpur; ²Vikram Sarabhai Space Centre/ISRO

Pressureless Sintered SiC Formed via Thermoplastic Fugitive Binders for High-temperature Applications: Rodrigo Orta Guerra¹; Olivia Brandt¹; Rodney Trice¹; Jeffrey Youngblood¹; ¹Purdue University

Development Calcium Doped La(Cr0.2Co0.2Fe0.2Mn0.2Ni0.2)

O3 High Entropy Perovskite Oxides: Sai Ram Gajjala¹; Rasit Koc¹;
¹Southern Illinois University

Mechanical Properties of La₂Zr₂O₇/ ZrO₂ Composites Prepared by Coating of ZrO₂ Sol: Bong-Gu Kim¹; Hyun-Hee Choi²; GuanLin Lyu²; JangHyeok Pyeon¹; Jung-Hun Son²; SeungCheol Yang¹; Yeon-Gill Jung¹; ¹Department of Materials Convergence and System Engineering of Changwon National University; ²Changwon national university

Dispersion Studies of Alumina Toughened Zirconia Powders for Direct Ink Writing Applications: Berfu Goeksel¹; Erin Koos¹; Bart Van Meerbeek¹; Jozef Vleugels¹; Annabel Braem¹; ¹KU Leuven

Analysis of Crystal Structure in Calcium and Strontium Hexaborides with Lithium Popancies: Alan Hirales¹; Olivia Graeve¹; ¹University of California San Diego

ARTIFICIAL INTELLIGENCE

Materials Informatics for Images and Multidimensional Datasets — On-Demand Oral Presentations

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division

Program Organizers: Amanda Krause, University of Florida; Alp Sehirlioglu, Case Western Reserve University; Daniel Ruscitto, General Electric

Friday AM | October 22, 2021 On-Demand Room 2 | MS&T On Demand

Invited

Training Deep-learning Models with 3D Microstructure Images to Predict Location-dependent Mechanical Properties in Additive Manufacturing: Ashley Spear¹; Carl Herriott¹; ¹University of Utah

Invited

Understanding Degradation and Failure Mechanisms by Multiscale and Multiresolution Electron Microscopy: Josh Kacher¹; ¹Georgia Institute of Technology

Invited

Graph Neural Networks for an Accurate and Interpretable Prediction of the Properties of Polycrystalline Materials: Minyi Dai¹; Mehmet Demirel¹; Yingyu Liang¹; $Jiamian\ Hu^1$; ¹University of Wisconsin-Madison

Invited

Open-source Hyper-dimensional Materials Analytics Using Hyperspy: *Joshua Taillon*¹; ¹National Institute of Standards and Technology

Invited

Machine Learning Ferroelectrics: Bayesianity, Parsimony, and Causality: Sergei Kalinin¹; ¹Oak Ridge National Laboratory

Multivariate Statistical Analysis (MVSA) for Hyperspectral Images: Chuong Nguyen¹; Alp Manavbasi¹; ¹Novelis

FUNDAMENTALS AND CHARACTERIZATION

Materials vs Minerals: Bridging the Gap between Materials Science and Earth and Planetary Science — On-Demand Oral Presentations

Sponsored by: ACerS

Program Organizers: Jessica Rimsza, Sandia National Laboratories; Krishna Muralidharan, The University of Arizona; Thomas, The University of Arizona

Friday AM | October 22, 2021 On-Demand Room 7 | MS&T On Demand

Coupling Aberration Corrected STEM and DFT to Determine the Crystal Chemistry of Hibonite for Application to Early Solar System Thermodynamics: Pierre-marie Zanetta¹; Venkat Manga²; Yao-Jen chang²; Tarunika Ramprasad³; Thomas Zega²; ¹University of Arizona; ²Lunar and Planetary Laboratory, The University of Arizona; ³The University of Arizona

Investigation of Variable Manganese and Nickel Content on Ductile Iron Castings Utilizing Ionic Liquids Isolated Iron and Bosch Carbon: Blake Stewart¹; Haley Doude¹; Jennifer Edmunson²; Eric Fox²; Morgan Abney³; Paul Hintze²; Jeffrey Mehan²; Hongjoo Rhee¹; ¹Mississippi State University; ²Marshall Space Flight Center; ³Langley Research Center

Modeling Thermodynamics of Condensation of Fe-Ti-bearing Byroxenes Relevant to the Early Solar System: Venkateswara Manga¹; Thomas Zega¹; ¹Lunar and Planetary Laboratory/University of Arizona

Chemical Pathways for Formation of Carbon Nanostructures from Graphite: Implications for Circumstellar and Solar-system Carbon: *Abhishek Thakur*¹; Krishna Muralidharan¹; Thomas Zega¹; Lucy Ziurys¹; ¹University of Arizona

NANOMATERIALS

Mechanistic Insights into the Synergistic Properties of Nanocomposites — On-Demand Oral Presentations

Sponsored by: ACerS Basic Science Division, ACerS Bioceramics Division, ACerS Engineering Ceramics Division

Program Organizers: Vuk Uskokovic, University of California; Dragan Uskokovic, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts

Friday AM | October 22, 2021 On-Demand Room 11 | MS&T On Demand

Invited

Laser-deposited Films Containing Silver Nanoparticles for Antimicrobial Applications: Roger Narayan¹; ¹University of North Carolina

NANOMATERIALS

Mechanistic Insights into the Synergistic Properties of Nanocomposites — On-Demand Poster Presentations

Sponsored by: ACerS Basic Science Division, ACerS Bioceramics Division, ACerS Engineering Ceramics Division

Program Organizers: Vuk Uskokovic, University of California; Dragan Uskokovic, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Synergistic Effect of SiC and Carbon-based Flame Retardant Additives on Mechanical and Thermal Stability of Polypropylene Based Nanocomposites: Shruti Dubey¹; Kantesh Balani¹; J. Ramkumar¹; Surya Singh¹; ¹Indian Institute of Technology

MODELING

Multi Scale Modeling of Microstructure Deformation in Material Processing — On-Demand Oral: Multi Scale Modeling of Microstructure Deformation in Material Processing

Sponsored by: AIST Metallurgy—Processing, Products and Applications Technology Committee

Program Organizers: Lukasz Madej, AGH University of Science and Technology; Jaimie Tiley, Oak Ridge National Laboratory; Muszka Krzysztof, AGH University of Science and Technology; Danuta Szeliga, AGH University of Science and Technology

Friday AM | October 22, 2021 On-Demand Room 10 | MS&T On Demand

Session Chair: Krzysztof Muszka, AGH University

Hot Deformation Microstructure and Processing Map of Cast Ni-based Superalloy IN-100: Yusaku Hasebe¹; Takehito Hagisawa²; Satoru Ohsaki²; Kazuya Kubo²; Cheng Yang²; Kenta Aoyagi²; Kenta Yamanaka²; Akihiko Chiba²; ¹The Japan Steel Works LTD; ²Japan

Enabling Accurate Coarse-grained Atomistic Simulation of Defect Behavior in Random Alloys: Kevin Chu¹; Adrian Diaz²; Youping Chen³; David McDowell¹; ¹Georgia Institute of Technology; ²Los Alamos National Laboratory; ³University of Florida

Numerical Studies of the Effect of Phase Stability on the Deformation Behavior of FeMnNiCoMo High Entropy Alloy: Kamil Cichocki¹; Tomasz Koziel¹; Grzegorz Cios¹; Lukasz Madej¹; Piotr Bala¹; *Krzysztof Muszka*¹; ¹AGH University of Science and Technology

The Role of the Initial Digital Microstructure Generation Algorithm in the Cellular Automata Static Recrystallization Predictions: Mateusz Sitko¹; *Lukasz Madej*¹; ¹AGH University of Science and Technology

Sensitivity Analysis, Identification and Validation of the Stochastic Model Describing Evolution of Microstructural Parameters during Hot Forming of Metallic Materials: Danuta Szeliga¹; Natalia Czyzewska¹; Konrad Klimczak¹; Jan Kusiak¹; Pawel Morkisz¹; Piotr Oprocha¹; Maciej Pietrzyk¹; Pawel Przybylowicz¹; ¹AGH University of Science and Technology

Temperature and Texture Dependent Constitutive Modeling of AZ31 Sheet Magnesium: Daniel Kenney¹; Marcos Lugo¹; Jared Darius¹; ¹Liberty University - School of Engineering

Using Martensite Crystallography to Determine Transformation: Induced Deformation of Ferrite In Dual-phase Steels: Vibhor Atreya¹; Cornelis Bos²; Maria Santofimia¹; ¹Delft University of Technology; ²Tata Steel R&D

Multi Scale Modeling with Microstructure Characteristics of Martensitic Steel for Rolling Contact Fatigue Life Prediction: Jinheung Park¹; Kijung Lee¹; Soonwoo Kwon²; Myoung-gyu Lee¹; ¹Seoul National University; ²Hyundai Motor Company

Crystal Plasticity-based Forming Limit Prediction for Ultra-thin Bipolar Plate for Proton Exchange Membrane Fuel Cells: *Minh Tien Tran*¹; Dae Ho Lee¹; Huai Wang²; Ho Won Lee³; Dong-Kyu Kim¹; ¹University of Ulsan; ²Chinese Academy of Sciences; ³Korea Institute of Materials Science

Crystal Plasticity Modeling of Twin Variant Selection in HCP Magnesium: Adwitiya Rao¹; Anirban Patra¹; ¹IIT Bombay

Study of Near Boundary Gradient Zones in an Aluminum Alloy Using Strain Gradient Crystal Plasticity and Experiments: Namit Pai¹; Indradev Samajdar¹; Anirban Patra¹; Indian Institute of Technology Bombay

NANOMATERIALS

Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry — On-Demand Oral Presentations

Sponsored by: ACerS Electronics Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Gary Pickrell, Virginia Tech; Navin Manjooran, Solve Technology and Research, Inc.

Friday AM | October 22, 2021 On-Demand Room 11 | MS&T On Demand

Substituent Effects on the Solubility and Electronic Properties of the Cyanine Dye Cy5: Austin Biaggne¹; Jeunghoon Lee¹; William Knowlton¹; Bernard Yurke¹; Lan Li²; ¹Boise State University

In-Person Event: OCTOBER 17-20, 2021• COLUMBUS, OHIO On-Demand Content available:

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

Dissolution of Atherosclerosis Plaque in Human Coronary Artery Induced by Nanobubbles: Ao Li¹; James Earthman²; ¹University of California Irvine; ²UCIrvine

Skin-wearable PDMS-based Electronic Decals by Aerosol Jet 3D Printing: *Jacob Brenneman*¹; Derya Tansel¹; Gary Fedder¹; Rahul Panat¹; ¹Carnegie Mellon University

Targeted Disinfection of Pathogenic Bacteria Using a Nanostructured Electrocatalytic Device: Hammad Malik¹; Rachel D'Agostini¹; Eian Brightwell¹; Dustin Williams¹; Swomitra Mohanty¹; Krista Carlson¹; ¹University of Utah

Fabrication of Dendrite Structure Silver Nanowires / Polymer Nanocomposite for Transparent Flexible Pressure Sensor: Zhiming Shen¹; Narongdet Sulatchaneenopdon¹; Hyoung-Won Son¹; Hisayuki Suematsu¹; Tadachika Nakayama¹; ¹Nagaoka University of Technology

IRON AND STEEL (FERROUS ALLOYS)

New Frontiers in Physical Metallurgy of Steels — On-Demand Oral Presentations

Sponsored by: AIST: MPPA Committee, TMS Steels Committee

Program Organizers: Matthias Militzer, University of British Columbia; Pello Uranga, CEIT and TECNUN (University of Navarra); Jonah Klemm-Toole, Colorado School of Mines; Amy Clarke, Colorado School of Mines; Amit Behera, QuesTek Innovations LLC

Friday AM | October 22, 2021 On-Demand Room 8 | MS&T On Demand

Invited

New Approach to Producing High Alloy Steels: *Hatem Zurob*¹, Zachary Detweiler²; Daniel Bullard²; ¹McMaster University; ²Arcanum Alloys

Invited

Nanoscale Investigation of Austenite/ferrite Interfaces in Medium Carbon Fe-Mn-C Steels at Different Inter-critical Temperatures: Olha Nakonechna¹; Fredric Danoix²; Helena Zapolsky²; Didier Huin³; Nicolas Charbonnier³; Lionel Germain⁴; Mohamed Gouné⁵; ¹University of Rouen Normandy; ²CNRS/GPM; ³ArcelorMittal research SA; ⁴Université de Lorraine; ⁵Université de Bordeaux

Austenite Decomposition during Hot-strip Rolling of Microalloyed Low-carbon Steel: Wing Shan Tam¹; Matthias Militzer¹; ¹The University of British Columbia

Austenite Decomposition in the Coarse Grain Heat Affected Zone of X80 Line Pipe Steel: Sabyasachi Roy¹; Matthias Militzer¹; Warren Poole¹; ¹The University of British Columbia

Nano-precipitation and Resultant Surface Hardening by Nitriding of Ferrous Alloys: *Goro Miyamoto*¹; Tadashi Furuhara¹; ¹Tohoku University

Microstructure and Toughness Correlation in High Strength Q&T Boron Steels Microalloyed with Nb and Mo: Irati Zurutuza¹; Nerea Isasti¹; Eric Detemple²; Volker Schwinn²; Hardy Mohrbacher³; Pello Uranga¹; ¹CEIT and TECNUN (University of Navarra); ²Dillinger Hüttenwerke; ³NiobelCon bvba

Simulation of the Nitriding and Ferritic Nitrocarburizing (FNC) Processes: Mei Yang¹; Haoxing You¹; Richard Sisson¹; ¹Worcester Ploytechnic Institute

Relationship between Fatigue Strength and Microstructure of Carburized Steel Tempered at Different Temperature: *Takuya Kita*¹; Kazumasa Yasuda¹; Junya Asaoka¹; Goro Miyamoto²; Tadashi Furuhara²; ¹Denso Corporation; ²Tohoku University

Tribological Characterization of Silicon Stainless Steel Alloys: *Prince Setia*¹; K Thomas Tharian²; T Venkateswaran²; Sudhanshu Shekhar Singh¹; Shashank Shekhar¹; ¹Indian Institute of Technology Kanpur; ²Indian Space Research Organization

BIOMATERIALS

Next Generation Biomaterials — On-Demand Oral Presentations

Sponsored by: ACerS Bioceramics Division, TMS Biomaterials Committee

Program Organizers: Roger Narayan, University of North Carolina; Min Wang, University of Hong Kong; Shawn Allan, Lithoz America LLC

Friday AM | October 22, 2021 On-Demand Room 3 | MS&T On Demand

Invited

Additive Manufacturing of Microstructured and Nanostructured Active Medical Devices: Roger Narayan¹; ¹University of North Carolina

Invited

Hybrid Nanomanufacturing for Wearable Intelligence: *Wenzhuo Wu*¹; ¹Purdue University

Invited

Calcium Silicate & Calcium Aluminate Bioactive Cements: Carolyn Primus¹; ¹Primus Consulting

Invited

Bijels-derived Structures for Tissue Engineering Applications: *Min Wang*¹; ¹University of Hong Kong

Invited

Novel Colloidal Based Biomaterials for Investigating Cellular Mechanotransduction Mechanisms: Ashley Brown¹; ¹North Carolina State University and UNC Chapel Hill

Invited

Calcium Phosphate Nanoparticles as Intrinsic Inorganic Antimicrobials: *Vuk Uskokovic*¹; ¹University of California

Invited

3D Binderjet Printing of Zirconia Based Ceramics, Innovative Processing Aspects and Challenges: *Srimanta Barui*¹; Deepa Mishra¹; Gowtham N H¹; Bikramjit Basu¹; ¹Indian Institute of Science Bangalore

Invited

Sustained Delivery of Anticancer and Antimicrobial Drugs through Hollow Silica Capsules as Transporters: Eva Krakor¹; Isabel Gessner¹; Sanjay Mathur¹; ¹University of Cologne

Invited

Combating Plastic Waste Accumulation through Innovative Biodegradable Superabsorbent Polymers Used in Disposable Consumer Products: Jeffrey Bates¹; ¹University of Utah

Technical Program

Invited

Light-based Nanomedicine: Multimodal Diagnostics Combined with Drug-free Therapeutics: *Tanveer Tabish*¹; Mohammed Sharahili²; ¹Imperial College London; ²University of Exeter

Invited

Addition of Antimicrobial Property to Hydroxyapatite/Collagen Bone-like Nanocomposite Utilizing Silver Nanoparticles: Masanori Kikuchi¹; ¹National Institute for Materials Science

Invited

Stereolithographic Additive Manufacturing of Dental Crowns with Functionally Distributed Translucencies: Soshu Kirihara¹; ¹Osaka University

Effects of Thermal Stress on Calcium Phosphate Glass-derived Cements for Vital Pulp Therapy: Jerry Howard¹; Jenna Young¹; John Colombo²; Steven Naleway¹; Krista Carlson¹; ¹University of Utah; ²University of Nevada, Las Vegas

Alginate Core Polyurethane Shape Memory Foam Composite with Antimicrobial Properties for Negative Pressure Wound Therapy: *Emily Lazarus*¹; Iris V. Rivero¹; Robert Osgood¹; ¹Rochester Institute of Technology

Additive Manufacturing of PLA-based Composites Using a Colloidal Feedstock: Biodegradable and Permanent Scaffolds in Medical Applications: Begoña Ferrari¹; Ana Ferrandez-Montero¹; Alvaro Eguiluz¹; Antonio Javier Sanchez-Herencia¹; ¹Instituto de Cerámica y Vidrio, CSIC

Enzymes Immobilized on Nanocarriers for the Degradation of Synthetic Polymers: Eva Krakor¹; Sanjay Mathur¹; Isabel Gessner¹; Michael Wilhelm¹; ¹University of Cologne

Impact of Wall Thickness and Pores Size Variation on Hydroxyapatite Based Triply Periodic Minimal Surfaces: Islam Bouakaz¹; David Grossin²; Gregory Nolens¹; ¹CERHUM; ²Institut National Polytechnique de Toulouse

4D Bioprinting for Making Hierarchical Composite Scaffolds for Blood Vessel Regeneration: Shangsi Chen¹; *Min Wang*¹; ¹University of Hong Kong

Light-adaptive Dynamic DNA-based Hydrogel: *Joonas Ryssy*¹; Sesha Manuguri¹; Anton Kuzyk¹; ¹Aalto University

BIOMATERIALS

Next Generation Biomaterials — On-Demand Poster Presentations

Sponsored by: ACerS Bioceramics Division, TMS Biomaterials Committee

Program Organizers: Roger Narayan, University of North Carolina; Min Wang, University of Hong Kong; Shawn Allan, Lithoz America LLC

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

4D Printed Shape Morphing PDLLA-co-TMC/GelMA Scaffolds for Tissue Regeneration: Xiaodie Chen¹; Jiahui Lai¹; *Min Wang*¹; ¹University of Hong Kong

Metal Release from a Biomedical CoCrMo Alloy in Mixed Protein Solutions under Static and Sliding Conditions – Effects of Protein Aggregation and Metal Precipitation: Zheng Wei¹; Valentin Romanovski²; Luimar Filho³; Cecilia Cecilia³; Yolanda Hedberg¹; ¹Western University; ²National Academy of Sciences of Belarus; ³Uppsala University

FUNDAMENTALS AND CHARACTERIZATION

Nucleation of Solid-State Phase Transformations — On-Demand Oral Presentations

Sponsored by: TMS Phase Transformations Committee

Program Organizers: Eric Lass, University of Tennessee-Knoxville; Sophie Primig, University of New South Wales; Keith Knipling, Naval Research Laboratory

Friday AM | October 22, 2021 On-Demand Room 7 | MS&T On Demand

Effect of Cooling Rate and Austenitic Grain Size on the Austenite Decomposition Kinetics in a Low-carbon Steel: Carlos Alberto Barajas-Miguel¹; Octavio Vázquez-Gómez¹; Antonio Oliver-Reynoso¹; Edgar López-Martínez²; Héctor Javier Vergara-Hernández¹; ¹Tecnológico Nacional de México/ I.T. Morelia: ²Universidad del Istmo

3-dimensional Observation of Bainite from Austenite Grain Boundary in 0.6wt% Carbon Steel.: *Shotaro Jimbo*¹; Shoichi Nambu¹; ¹University of Tokyo

Identification of Critical Nucleation Events by the Gromov-Wasserstein Distance: *Jeremy Mason*¹; Sakura Kawano¹; ¹University of California, Davis

SPECIAL TOPICS

Online Teaching Best Practices for the COVID Era and Beyond — On-Demand Oral Presentations

Sponsored by: ACerS Electronic Division

Program Organizers: B. Reeja Jayan, Carnegie Mellon University; Jennifer Andrew, University of Florida

Friday AM | October 22, 2021 On-Demand Room 13 | MS&T On Demand

Session Chair: B. Reeja Jayan, Carnegie Mellon University

Invited

Debunking the Hidden Curriculum in Online STEM Courses: A Depiction of Three Latinx Engineering Educators: Idalis Villanueva-Alarcón¹; John Mendoza-Garcia¹; Sindia Rivera-Jiménez¹; ¹University of Florida

Photonics Workforce Training Using Game-based Learning and Interactive Desktop Simulations: Erik Verlage¹; ¹Massachusetts Institute of Technology

Virtual Learning in Minecraft: Using a Game to Teach Materials Engineering: B. Reeja Jayan¹; Chad Hershock¹; Michael Melville¹; ¹Carnegie Mellon University

Invited

Working Together Apart: Design Thinking and Sustainable Engineering Design Projects Online: Nancy Ruzycki¹; ¹University of Florida

CERAMIC AND GLASS MATERIALS

Phase Transformations in Ceramics: Science and Applications — On-Demand Oral Presentations

Sponsored by: ACerS Basic Science Division, ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Scott Mccormack, University of California, Davis; Pankaj Sarin, Oklahoma State University; Sanjay V. Khare, University of Toledo; Waltraud Kriven, University of Illinois at Urbana-Champaign

Friday AM | October 22, 2021 On-Demand Room 4 | MS&T On Demand

Invited

New Insight into the Disordering Mechanism in Fluorite-related Ceramics: Maik Lang¹; ¹University of Tennessee

Invited

Phase Stability and Transformation in Borides Examined by X-ray Diffraction: James Cahill¹, ¹Lawrence Livermore National Laboratory

Invited

Prediction of Diffusion-less Phase Transformations: Randall Hay¹; Emmanuel Boakye¹; Pavel Mogilevsky¹; Thomas Key¹; ¹U.S. Air Force Research Laboratory

Order-disorder Relationships in Zirconium Carbides: Theresa Davey¹; Ying Chen¹; ¹Tohoku University

Computation of Fracture, Twinning, and Amorphization in Anisotropic Single and Polycrystalline Real-structured B4C Using Phase Field Approaches in the Finite Element Method: Benhour Amirian¹; Bilen Abali²; Mali Moshtaghioun³; Jonathan Ligda⁴; Debjoy Mallick⁵; James Hogan¹; ¹University of Alberta; ²Technische Universität Berlin; ³Spanish Ministry of Science and Innovation; ⁴DEVCOM Army Research Laboratory; ⁵Amy Research Laboratory

MODELING

Phonon Properties of Materials: Modeling and Experimentation — On-Demand Oral Presentations

Sponsored by: TMS Advanced Characterization, Testing, and Simulation Committee, TMS: Energy Conversion and Storage Committee

Program Organizers: Murali Gopal Muraleedharan, Oak Ridge National Laboratory; Zhe Cheng, University of Illinois at Urbana-Champaign; Kiarash Gordiz, Massachusetts Institute of Technology

Friday AM | October 22, 2021 On-Demand Room 10 | MS&T On Demand

Invited

Phonons and Twisting Symmetries in Non-symmorphic Materials: Lucas Lindsay¹; ¹Oak Ridge National Laboratory

Invited

Transfer Learning for Phonon and Thermal Property Predictions: Zeyu Liu¹; Tengfei Luo¹; University of Notre Dame

Invited

High-temperature Heat Transport in Anharmonic Systems at the Nanoscale: Keivan Esfarjani[†]; ¹University of Virginia

Experimental and Computational Thermal Conductivity Reduction in Single Crystal Thorium Dioxide from Lattice Defects: Cody Dennett¹; Marat Khafizov²; Anter El-Azab³; David Hurley¹; ¹Idaho National Laboratory; ²Ohio State University; ³Purdue University

Tailoring Thermal Transport in Insulators Using Energetic Ions: Vinay Chauhan¹; Joshua Ferrigno¹; Saqeeb Adnan¹; Zhandos Utegulov²; Cody Dennett³; Amey Khanolkar³; Zilong Hua³; Lingfeng He³; David Hurley³; *Marat Khafizov*¹; ¹Ohio State University; ²Nazarbayev University; ³Idaho National Laboratory

Understanding Ionic Conduction Mechanisms in Glassy Electrolytes Using MD Vibrational Analysis: Cameran Beg¹; John Kieffer¹; ¹University of Michigan

BIOMATERIALS

Porous Materials for Biomedical Applications — On-Demand Oral Presentations

Sponsored by: ACerS Bioceramics Division

Program Organizers: Usman Liaqat, National University of Sciences and Technology; Chuanbin Mao, University of Oklahoma; Mingying Yang, Zhejiang University

Friday AM | October 22, 2021 On-Demand Room 3 | MS&T On Demand

Corrosion of Mechanically Milled, Annealed, and Biocompatible Magnesium Alloys for Osteopathic Tissue Regeneration.: Adam Rutherford¹; Mark Atwater¹; Julian Tse Lop Kun¹; ¹Liberty University

Technical Program

PROCESSING AND MANUFACTURING

Powder Metallurgical Components in High Performance Applications — On-Demand Oral Presentations

Sponsored by: TMS Powder Materials Committee

Program Organizers: Peng Cao, The University of Auckland; Hanadi Salem, American University in Cairo; Paul Prichard, Kennametal Inc.; Matthew Osborne, Global Advanced Metals; James Paramore, US Army Research Laboratory

Friday AM | October 22, 2021 On-Demand Room 12 | MS&T On Demand

Session Chair: Peng Cao, University of Auckland

Cemented Carbides with Complex Binder Alloys: *Yong Liu*¹; ¹Central South University

Development of Eco-friendly POM Binder System for High Strength Ti-MIM: *Keemi Lim*¹; Muhammad Hayat¹; Peng Cao¹; ¹The University of Auckland

Fabrication of Titanium and Titanium Alloy Components by Thermomechanical Powder Consolidation: Deliang Zhang¹; Northeastern University

High-strength Titanium Matrix Composites Reinforced with In Situ Polycarbosilane-derived TiC Particle: Xin Lu¹; Yu Pan¹; ¹University of Science and Technology Beijing

Microstructural Uniformity duringSsintering, Thermal-plastic Processing and Recrystallization of Tungsten: Lin Zhang¹; Xingyu Li¹; Xuanhui Qu¹; ¹University of Science and Technology Beijing

Thermodynamic Model for Predicting the Embodied Energy of Titanium Alloys Produced by Powder Metallurgy: James Paramore¹; Brady Butler¹; Matthew Dunstan¹; ¹US Army Research Laboratory

Synthesis of Low-oxygen Titanium towards Achieving Strength-ductility Synergy: *Kumar Jena*¹; Ying Xu¹; Peng Cao¹; ¹University Of Auckalnd

Synthesis, Sintering and Mechanical Behavior of Ultra-fine Lowoxygen Titanium Powder: Ying Xu¹; Kumar Jena¹; Peng Cao¹; ¹The University of Auckland

Effect of Manufacturing Parameters on Inoculated PM Tool Steel Properties: Randa Habib¹; Ayman Elsayed¹; Saiid Anwar¹; Bahaa Salah¹; *Taha Mattar*¹; ¹Central Metallurgical Research and Development Institute

Selective Laser Melting of Metallic Glass Powder to Improve Chemical and Mechanical Performance of Magnesium: Xiyu Yao¹; ¹Southern University of Science and Technology

CERAMIC AND GLASS MATERIALS

Preceramic Polymers; Synthesis, Processing, Modeling, and Derived Ceramics — On-Demand Oral Session: Preceramic Polymers

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Matthew Dickerson, Air Force Research Laboratory; Gurpreet Singh, Kansas State University; Paolo Colombo, University of Padova; Günter Motz, Universität Bayreuth

Friday AM | October 22, 2021 On-Demand Room 4 | MS&T On Demand

Session Chair: Matthew Dickerson, Air Force Research Laboratory

Invited

Novel Hydrogen Chemisorption Properties of Polymer-derived Amorphous SiAlN Compounds: Yuji Iwamoto¹; ¹Nagoya Institute of Technology

Invited

Synthesis and 3D Printing of Antibacterial Polymer-derived Bioceramic Scaffolds for Bone Engineering Applications: Joelle El Hayek¹; Laurence Soussan¹; Philippe Miele¹; Mikhael Bechelany¹; Chrystelle Salameh¹; ¹Institut Européen des Membranes

Invited

Polymer-derived UHTC Synthesis: *Matthew Laskoski*¹; ¹US Nava Research Lab

Superparamagnetic Silicon Carbonitride Ceramic Fibers through Insitu Generation of Iron Silicide Nanoparticles: Guenter Motz¹; Antoine Viard¹; Birgit Weber¹; Samuel Bernard²; ¹University of Bayreuth; ²CNRS IRCER Limoges

Thermomechanical Performance of a Novel Class of Ultra-high Temperature Polymer Derived La Containing Zr-B-C-(O) Ceramics: *Gokul Gopakumar*¹; Ganesh T¹; Renjith Devasia²; Ravi Kumar¹; ¹Indian Institute of Technology Madras; ²Vikram Sarabhai Space Centre

Laser and Furnace Pyrolyzed Organosilazane-based Glass/ZrO₂ Composite Coating Systems: A Comparison: Alexander Horcher¹; Katja Tangermann-Gerk²; Walter Krenkel¹; Günter Motz¹; ¹University of Bayreuth; ²Bayerisches Laserzentrum Erlangen

Additive Manufacturing of Hybrid Polymer-derived Ceramics via Core-shell Direct-ink Writing: Robert Pack¹; James Kemp¹; Brett Compton¹; ¹University of Tennessee Knoxville

Metal-coordinated Preceramic Polymer Hairy Nanoparticles for Ultra-high Temperature Structural Materials: Maria Parvulescu¹; Kara Martin²; Christina Thompson²; Matthew Dickerson²; ¹Air Force Research Laboratory; ²AFRL

SiOC Coatings on Yttria Stabilized Zirconia Microspheres Using a Fluidized Bed Coating Process: Sanjay Kumar¹; Kathy Lu¹; ¹Virginia Polytechnic Institute and State University

Preceramic Polymer Organization via Block Copolymer Templating: John Bowen¹; Lisa Rueschhoff²; Shahryar Mooraj³; Jacob Goodman⁴; Emily Davidson⁵; Benito Roman-Manso⁵; K. L. Martin¹; Scott Schiffres⁴; Wen Chen³; Matthew Dickerson²; Jennifer Lewis⁵; ¹UES Inc.; ²Air Force Research Lab; ³University of Massachusetts Amherst; ⁴Binghamton University; ⁵Harvard University

Isoconversional Methods and Kinetic Reaction Models for Cure Modelling of Commercial Pre-ceramic Polymers and their Blends: Zlatomir Apostolov¹; Elizabeth Heckman²; Michael Cinibulk¹; ¹Air Force Research Laboratory; ²Wright State University

Impact of Preceramic Polymer Architecture on Derived Ceramics: Timothy Pruyn¹; Matthew Dickerson¹; Brandon Ackley¹; ¹Materials and Manufacturing Directorate

Evolutive State and Damage Modeling and Characterization for PIP-based Hypersonic Vehicle Materials: Rick Hall¹; Zlatomir Apostolov¹; Ashley Hilmas¹; George Jefferson¹; Vikas Varshney¹; Michael Cinibulk¹; Robert Brockman²; Rebecca Hoffman²; Thomas Key³; Derek King³; ¹Air Force Research Laboratory; ²University of Dayton Research Institute; ³UES

Embedded Direct Ink Writing of Freeform Ceramic Components: *Kai Huang*¹; Hamada Elsayed¹; Giorgia Franchin¹; Paolo Colombo¹; ¹University of Padova

Study on Manufacturing of Silsesquiazane Derived Hierarchically Porous Silicon Carbonitride Ceramics with Aligned Macropore by Freeze-casting Method: *Tae-Hwan Huh*¹; Young-Je Kwark¹; ¹Soongsil University

CERAMIC AND GLASS MATERIALS

Preceramic Polymers; Synthesis, Processing, Modeling, and Derived Ceramics — On-Demand Poster Presentations

Sponsored by: ACerS Engineering Ceramics Division

Program Organizers: Matthew Dickerson, Air Force Research Laboratory; Gurpreet Singh, Kansas State University; Paolo Colombo, University of Padova; Günter Motz, Universität Bayreuth

Friday AM | October 22, 2021 On-Demand Poster Hall | MS&T On Demand

Session Chair: Joe Bowen, Air Force Research Laboratory

Fabrication of SiOC Fibermats via Electrospinning and their Applications in Energy Storage Systems: Shakir Bin Mujib¹; Gurpreet Singh¹; ¹Kansas State University

Investigation of Polymer Derived SiOC/Carbon Nanotube Electrodes for Na-ion Batteries: Mabel Anstine¹; Shakir Bin Mujib¹; Gurpreet Singh¹; ¹Kansas State University

Porous SiOC/SiC Ceramics via an Active-filler Catalyzed Polymer-derived Method: *Advaith Rau*¹; Kathy Lu¹; ¹Virginia Polytechnic Institute and State University

Synthesis of Precursor Derived Si(B)CN Ceramic Coating for Hightemperature Applications: Lanie Mannebach¹; Shakir Bin Mujib¹; Gurpreet Singh¹; ¹Kansas State University

FUNDAMENTALS AND CHARACTERIZATION

Probing Defect Properties and Behavior under Mechanical Deformation and Extreme Conditions — On-Demand Oral Session: Defect Property, Characterization, and Evolution

Sponsored by: TMS Nanomechanical Materials Behavior Committee, TMS Nuclear Materials Committee, TMS Mechanical Bahavior of Materials Committee

Program Organizers: Zhe Fan, Lamar University; Tianyi Chen, Oregon State University; Shijun Zhao, City University of Hong Kong; Mitra Taheri, Johns Hopkins University; Yury Osetskiy, Oak Ridge National Laboratory

Friday AM | October 22, 2021 On-Demand Room 7 | MS&T On Demand

Invited

Defect Absorption at Grain Boundaries: A Grain Boundary Structure Perspective: *David Srolovitz*¹; Jian Han¹; Larissa Woryk²; Mitra Taheri³; Jaime Marian⁴; ¹City University of Hong Kong; ²University of Pennsylvania; ³Johns Hopkins University; ⁴University of California, Los Angeles

Invited

Automated Defect Detection in Electron Microscopy with Machine Learning: Dane Morgan¹; Ryan Jacobs¹; Mingren Shen¹; Kevin Field²; ¹University of Wisconsin-Madison; ²University of Michigan

Invited

Effects of Cr On 1/2<111> to <100> Loop Transformation in Concentrated Fe-Cr Alloys under Irradiation: Xian-Ming Bai¹; ¹Virginia Polytechnic Institute and State University

Invited

A Statistical Approach for Atomistic Calculations of Vacancy Formation Energy and Chemical Potentials in Concentrated Solid-solution Alloys: Yongfeng Zhang¹; Anus Manzoor²; Chao Jiang³; Dilpuneet Aidhy²; ¹University of Wisconsin-Madison; ²University of Wyoming; ³Idaho National Laboratory

Defect Properties and Deformation Mechanisms of Multi-component Intermetallics: *Shijun Zhao*¹; ¹City University of Hong Kong

Invited

Irradiation-induced Self-organization of the Microstructure in Irradiated Alloys and Its Influence on Mechanical Properties: Pascal Bellon¹; Qun Li¹; Gabriel Bouobda Moladje¹; Sung-Eun Kim¹; Soumyajit Jana¹; Robert Averback¹; ¹University of Illinois at Urbana-Champaign

Technical Program

Invited

Machine Learning Driven In-situ TEM with Ion Irradiation: Meimei Li¹; ¹Argonne National Laboratory

Invited

Lattice Distortion in NbTaTiV and NbTaTiVZr Refractory High-entropy Alloys: Chanho Lee¹; Yi Chou²; George Kim³; Michael Gao⁴; Ke An⁵; Jamieson Brechtl⁵; Chuan Zhang⁶; Wei Chen³; Jonathan Poplawsky⁶; Gian Song⁷; Yi-Chia Chou²; Peter Liaw՞ð; ¹Los Alamos National Laboratory; ²National Chiao Tung University; ³Illinois Institute of Technology; ⁴National Energy Technology Laboratory/Leidos Research Support Team; ⁵Oak Ridge National Laboratory; ⁶Computherm LLC; ¬Kongju National University; ⁶University of Tennessee

Invited

Synchrotron High-energy X-ray Studies of Nuclear Structural Materials: Deformation and Additive Manufacturing: Xuan Zhang¹; Meimei Li²; Jonathan Almer¹; Jun-Sang Park¹; Peter Kenesei¹; Andrew Chuang¹; ¹Argonne National Laboratory

Invited

The Role of Interfaces in Mechanical Response and Radiation Resistance of Ceramics: *Izabela Szlufarska*¹; Hongliang Zhang¹; Jianqi Xi¹; Xing Wang¹; ¹University of Wisconsin-Madison

Invited

Irradiation Defects and Strain-induced Martensitic Transformations: Janelle Wharry¹; Chao Yang¹; Yangyang Zhao¹; Keyou Mao²; Yash Pachaury¹; Anter El-Azab¹; ¹Purdue University; ²Oak Ridge National Laboratory

Invited

Effects of Electronic Structures on Defect and Mechanical Properties of BCC Multicomponent Alloys: Yong-Jie Hu¹; *Liang Qi*²; ¹Drexel university; ²University of Michigan

Invited

The Impact of Elastic Anisotropy on Hydride Morphology in Zirconium: Pierre-Clement Simon¹; *Michael Tonks*²; Arthur Motta¹; Long-Qing Chen¹; Mark Daymond³; ¹Pennsylvania State University; ²University of Florida; ³Queen's University

Invited

Impact of Carbon Nanotube Defects on Fracture Mechanisms in Ceramic Nanocomposites: *Yingchao Yang*¹; Brian Sheldon²; Izabela Szlufarska³; Jun Lou⁴; ¹University of Maine; ²Brown University; ³University of Wisconsin; ⁴Rice University

Invited

Studying Radiation Effects in Nuclear Fuels via Advanced Characterization and Modeling: Lingfeng He¹; Kaustubh Bawane¹; Tiankai Yao¹; Pengyuan Xiu¹; Marat Khafizov²; Miaomiao Jin³; Chao Jiang¹; Cody Dennett¹; Zilong Hua¹; Anter El-Azab⁴; David Hurley¹; Jian Gan¹; Ildaho National Laboratory; The Ohio State University; Pennsylvania State University; Purdue University

Invited

Irradiation Response of FCC and BCC Compositionally Complex Alloys Using In-situ and Ex-situ Irradiations: Adrien Couet¹; Calvin Parkin¹; Michael Moorehead¹; Lin Shao²; Frank Garner¹; Lingfeng He³; Pengyuan Xiu³; Wei-Ying Chen⁴; Meimei Li⁴; Kumar Sridharan¹; ¹University of Wisconsin-Madison; ²Texas A&M University; ³Idaho National Laboratory; ⁴Argonne National Laboratory

Effects of Annealing and Ion Irradiation on Helium Implanted NiCo and NiFe Concentrated Solid-solution Alloys: Zhe Fan¹; Xing Wang¹; Di Chen²; Yongqiang Wang²; Yuri Osetsky¹; Hongbin Bei¹; William Weber³; Yanwen Zhang¹; ¹Oak Ridge National Laboratory; ²Los Alamos National Laboratory; ³The University of Tennessee

Deformation Microstructure of Ferritic/Martensitic Steels after Spallation Neutron Irradiation: *Kun Wang*¹; ¹Alfred University

Elemental Partitioning Behavior among Precipitates in Aluminaforming-austenitic Stainless Steel: *Qing-Qiang Ren*¹; David Hoelzer¹; Michael Lance¹; Yukinori Yamamoto¹; Michael Brady¹; Jonathan Poplawsky¹; ¹Oak Ridge National Laboratory

Survey of Defect Absorption Effects in Grain Boundaries: *Larissa Woryk*¹; David Srolovitz²; Jian Han²; ¹University of Pennsylvania; ²City University of Hong Kong

Enhanced Load Transfer and Ductility in Al-9Ce Alloy through Heterogeneous Lamellar Microstructure Design by Cold Rolling and Annealing: *Chi Zhang*¹; ¹Shanghai Jiao Tong University

Influence of Microstructural Variation on Spall Failure of Al7085: Dung-Yi Wu¹; Chengyun Miao¹; Christopher DiMarco¹; K.T. Ramesh¹; Todd C. Hufnagel¹; ¹Johns Hopkins University

Switching the Fracture Toughness of Single Crystal ZnS by Light Irradiation: Tingting Zhu¹; Kuan Ding¹; Anahid Amiri¹; Yu Oshima²; Enrico Bruder¹; Robert Stark¹; Karsten Durst¹; Katsuyuki Matsunaga²; Atsutomo Nakamura²; *Xufei Fang*¹; ¹Technische Universität Darmstadt; ²Nagoya University

FUNDAMENTALS AND CHARACTERIZATION

Processing—Microstructure—Property Relationships of Titanium and Titanium Alloys — On-Demand Oral Presentations

Sponsored by: TMS Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Rongpei Shi, Lawrence Livermore National Laboratory; Michael Gram, Titanium Metals Corporation

Friday AM | October 22, 2021 On-Demand Room 7 | MS&T On Demand

Deformation Behavior of Ti-Ni-Fe Based Ternary B2 Pseudo Binary Intermetallic: Subha Panda¹; Jayant Jain²; Sudhanshu Singh³; ¹Indian Institute of Technology Kanpur; ²IIT Delhi; ³IIT Kanpur

PROCESSING AND MANUFACTURING

Processing and Performance of Materials Using Microwaves, Electric and Magnetic Fields, Ultrasound, Lasers, and Mechanical Work: The Rustum Roy Symposium — On-Demand Oral Presentations

Sponsored by: ACerS Basic Science Division, ACerS Manufacturing Division

Program Organizers: Morsi Mahmoud, King Fahd University of Petroleum & Minerals; Dinesh Agrawal, Pennsylvania State University; Guido Link, Karlsruhe Institute of Technology; Motoyasu Sato, Chubu University; Rishi Raj, University of Colorado; Christina Wildfire, National Energy Technology Laboratory; Zhiwei Peng, Central South University

Friday AM | October 22, 2021 On-Demand Room 12 | MS&T On Demand

Invited

Characterizing the Kinetics of Isothermal Microwave-assisted Chemical Syntheses (IMACS): Application of a Unified Process Kinetic Equation (UPKE): Boon Wong¹; ¹Retired

Invited

Micro Flash Sintering for Additive Manufacturing of Ceramics: Rubens Ingraci Neto¹; Rishi Raj²; ¹Los Alamos National Laboratory; ²University of Colorado

Invited

Conditions for the Microwave Effect: Motoyasu Sato¹; Shin Nakatani¹; ¹Chubu University

Novel Electrode Configuration Effects on the Microstructural Homogeneity of Flash Sintered Ceramics for Solid-state Battery Electrolytes.: Gareth Jones¹; Chris Green²; Sherry Ghanizadeh²; David Pearmain²; Geoff West¹; Emma Kendrick³; Claire Dancer¹; ¹University of Warwick; ²Lucideon Ltd; ³University of Birmingham

Methodology for Scaling Microwave Catalyst in a Fixed Bed: *Christina Wildfire*¹; Yan Zhou¹; Christopher Marin¹; Doug Kauffman¹; Dushyant Shekhawat¹; ¹National Energy Technology Laboratory

MATERIALS-ENVIRONMENT INTERACTIONS

Progressive Solutions to Improve Corrosion Resistance for Nuclear Waste Storage — On-Demand Alternative Nuclear Waste Storage Materials and New Imaging Neutron Microscopy Technique for Nuclear Waste Storage Glass Corroded in Aqueous Solution

Sponsored by: TMS Corrosion and Environmental Effects Committee, ACerS Glass & Optical Materials Division

Program Organizers: Madeleine Jordache, Stevens Institute of Technology; Gary Pickrell, Virginia Tech

Friday AM | October 22, 2021 On-Demand Room 9 | MS&T On Demand

Session Chairs: Madeleine Jordache, Stevens Institute of Technology; Gary Pickrell, Virginia Tech

Introductory Comments: *Madeleine Jordache*¹; ¹Stevens Institute of Technology

Invited

Particulars of Crystallization of Glass-ceramics for Nuclear Waste Storage: Edgar Zanotto¹; ¹Federal University of Sao Carlos

Invited

Neutron Microscope Based on Wolter Optics for Imaging Hydrogen Distribution in Glass: Boris Khaykovich¹; Daniel Hussey²; Suzanne Romaine³; Kiranmayee Kilaru⁴; Brian Ramsey⁴; ¹Massachusetts Institute Of Technology; ²NIST; ³Harvard-Smithsonian Center for Astrophysics; ⁴NASA

CERAMIC AND GLASS MATERIALS

Solid-state Optical Materials and Luminescence Properties — On-Demand Oral Presentations

Sponsored by: ACerS Basic Science Division, ACerS Engineering Ceramics Division, ACerS Glass & Optical Materials Division

Program Organizers: Yiquan Wu, Alfred University; Jas Sanghera, Naval Research Laboratory; Akio Ikesue, World-Lab. Co., Ltd; Rong-Jun Xie, Xiamen University; Mathieu Allix, University of Orle'ans; Kiyoshi Shimamura, National Institute for Materials Science; Liangbi Su, Shanghai Institute of Ceramics; Dariusz Hreniak, Institute of Low Temperature and Structure Research

Friday AM | October 22, 2021 On-Demand Room 4 | MS&T On Demand

Invited

Comonomer Isomers Result in LWIR:Transmitting ORMOCHALC Polymers: Darryl Boyd¹; Vinh Nguyen¹; Frederic Kung²; Jason Myers¹; Daniel Gibson¹; Colin Baker¹; Woohong Kim¹; Jasbinder Sanghera¹; ¹US Naval Research Laboratory; ²University Research Foundation

Technical Program

Invited

Enhancing Strength in Nanocrystalline Transparent Ceramics: Ricardo Castro¹; ¹University of California, Davis

Invited

A Green Chemistry Approach for the Preparation of Lanthanide Doped Alkaline-earth Fluoride Nanoparticles: Chiara Cressoni¹; Nicola Da Roit; Emil Milan¹; Francesca Parolini²; Mariapina D'Onofrio²; Giacomo Lucchini¹; Adolfo Speghini¹; ¹University of Verona and INSTM; ²University of Verona

Invited

Seearching Nitride Luminescent Materials for Applications in High Luminance Lighting and Sensing: Rong-Jun Xie¹, ¹Xiamen University

Invited

Versatile Non-cubic Transparent Ceramics Applicable to Broad Wavelength Region: Ho Jin Ma¹; *Do-Kyung Kim*¹; ¹Korea Advanced Institute of Science & Tech

Micro- and Submicro-defects in Magneto-optical Crystal CeF3: Dongsheng Yuan¹; Encarnación G. Víllora²; Kiyoshi Shimamura²; ¹National Institte for Materials Science; ²NIMS

Effect of Samarium Doping on the Phase Stability and Optical Properties of Agro-food Waste-derived Calcium Silicates: Manmeet Kaur¹; Kulvir Singh¹; ¹SPMS, Thapar Institute of Engineering and Technology

BIOMATERIALS

Surface Engineering and Characterization of Titanium and Titanium Alloys — On-Demand Oral Sessions – Surface Engineering and Characterization of Titanium and Titanium Alloys

Program Organizers: Silvia Spriano, Politecnico di Torino; Yolanda Hedberg, KTH Royal Institute of Technology; James Noel, University of Western Ontario; Sara Ferraris, Politecnico Di Torino Disat; Fernando Warchomicka, Graz University of Technology

Friday AM | October 22, 2021 On-Demand Room 3 | MS&T On Demand

Session Chairs: Silvia Spriano, Politecnico di Torino - DISAT; Yolanda Hedberg, Western University, London, Ontario, Canada; James Noel, Western University, London, Canada; Sara Ferraris, Politecnico di Torino - DISAT; Fernando Warchomicka, Graz University of Technology

Introductory Comments: Silvia Spriano¹; ¹Politecnico di Torino

Effect of Various Reciprocating Geometries on Tribological Properties of SS 304 and Ti6Al4V under Dry and Lubricated Conditions: Chinmayee Nayak¹; Rishabh Kundu²; Rajneesh Pandey³; Kantesh Balani¹; ¹Indian Institute of Technology, Kanpur; ²National Institute of Technology, Rourkela; ³Maulana Azad National Institute of Technology, Bhopal

Observations on the Mechanically Assisted Crevice Corrosion of Titanium: Single Asperity Tribocorrosion of Titanium Alloy and Selective Dissolution of Beta Phase of Ti-6Al-4V in Physiologically Representative Conditions: Jeremy Gilbert¹; Annsley Mace¹; Michael Kurtz¹; Dongkai Zhu¹; Yangping Liu¹; ¹Clemson-MUSC Bioengineering Program

Role of Patient Factors on Corrosion and Failure of Retrieved Metallic Artificial Hip and Knee Joint Implants: Saman Nikpour¹; Anastasia Codirenzi²; Matthew Teeter²; Yolanda Hedberg¹; ¹Western University; ²Western University Hospital

Influence of Water Vapor on Metal and Oxygen Transport in Oxide Scale and Alpha-case Formation in Pure Titanium: Beyza Öztürk¹; Lukas Mengis¹; Daniel Dickes²; Uwe Glatzel²; Mathias Galetz¹; ¹DECHEMA Research Institute; ²University of Bayreuth

Electrophoretic Deposition, Microstructure and Properties of Multicomponent Sodium Alginate-based Coatings on Titanium Biomaterials: Tomasz Moskalewicz¹; Maciej Warcaba¹; Marcin Kot¹; Zoya Hadzhieva²; Aldo R. Boccaccini²; ¹AGH University of Science and Technology; ²University of Erlangen-Nuremberg

Growing Integration Layer [GIL] Strategy for Direct Formation of Bioactive Ceramic Coating on Metallic Alloy: Masahiro Yoshimura¹; Chi Huang Huang²; ¹National Cheng Kung University; Tokyo Institute of Technology; ²National Cheng Kung University

Plasma Electrolytic Oxidation of Titanium Alloys with Electron Beam Designed Topography: Hugo Mora Sanchez¹; Florian Pixner²; Ricardo Buzolin²; Raul Arrabal¹; Fernando Warchomicka²; Endzhe Matykina¹; ¹Universidad Complutense de Madrid; ²Graz University of Technology

Enhancing Differentiation of Preosteoblast on Selective Laser Melting Titanium Implants Treated with Mixed Acid and Heat: Phuc Le¹; Seine A. Shintani¹; Hiroaki Takadama¹; Morihiro Ito¹; Tatsuya Kakutani¹; Hisashi Kitagaki¹; Shuntaro Terauchi¹; Takaaki Ueno¹; Hiroyuki Nakano¹; Yoichiro Nakajima¹; Kazuya Inoue¹; Tomiharu Matsushita¹; Seiji Yamaguchi¹; ¹Chubu University

PROCESSING AND MANUFACTURING

Synthesis, Characterization, Modeling and Applications of Functional Porous Materials — On-Demand Oral Session: Functional Porous Materials

Sponsored by: ACerS Electronics Division, ACerS Engineering Ceramics Division

Program Organizers: Lan Li, Boise State University; Winnie Wong-Ng, National Institute of Standards and Technology; Kevin Huang, University of South Carolina

Friday AM | October 22, 2021 On-Demand Room 12 | MS&T On Demand

Session Chair: Lan Li, Boise State University

Invited

Probing the Mechanisms of Reactive Capture and Conversion of CO2 into Inorganic Carbonates Using Architected Calcium and Magnesium Silicates: Greeshma Gadikota¹; Tianhe Yin¹; Xun Gao¹; Hassnain Asgar¹; ¹Cornell University

Invited

Hydrogen-bonded Organic Framework Materials for Gas Separation: Wei Zhou¹; ¹National Institute of Standards and Technology

Invited

Layer-by-layer Assembled Polymer/MOF Membrane for H₂/CO₂ Separation: Fangming Xiang¹; David Hopkinson¹; ¹National Energy Technology Laboratory

Invited

Small Molecules as Guests in Metal-organic Frameworks: Craig Brown¹; ¹ National Institute of Standards and Technology

Invited

Thermodynamics of Molybdenum Oxide Clusters Encapsulated in Zeolite Y: Xianghui Zhang¹; Vitaliy Goncharov¹; Cody Cockreham¹; Esra Mertsoy¹; Hui Sun²; Su Ha¹; Jean-Sabin McEwen¹; Xiaofeng Guo¹; Di Wu¹; ¹Washington State University; ²East China University of Science and Technology

Invited

Structure and CO₂ Adsorption Sites in the Flexible Coordination Polymer Ni-Dbm-Bpy from DFT: *Eric Cockayne*¹; Winnie Wong-Ng¹; Andrew Allen¹; ¹National Institute of Standards and Technology

Invited

New Strategies for Defects Formation and Amorphization of Metalorganic Frameworks: Tomce Runcevski¹; ¹Southern Methodist University

Material Characterization Testing of Synthetic Granular Composites Used in Equine Sports Surfaces: John Bridge¹; Charles Liu¹; Elijah Leonen¹; Kris Weisshaupt²; Kaleb Dempsey³; ¹University of Washington; ²MAP Laboratories LLC; ³Racing Surfaces Testing Lab

Chemical-aided Synthesis of Anorthite-sodalite-afghanite Porous Ceramics from Granite-clay-plantain Peel Mix: Odewole Oluwagbenga¹; Kashim Bolaji²; Akinbogun Lawrence¹; Folorunso Oladayo¹; ¹Federal University of Technology.; ²Federal University of Technology.

MATERIALS-ENVIRONMENT INTERACTIONS

Thermodynamics of Materials in Extreme Environments — On-Demand: Thermodynamics and Stabilities of Alloys and Ceramics

Sponsored by: ACerS Basic Science Division, ACerS Energy Materials and Systems Division

Program Organizers: Xiaofeng Guo, Washington State University; Kristina Lilova, Arizona State University; Kyle Brinkman, Clemson University; Alexandra Navrotsky, Arizona State University; Jake Amoroso, Savannah River National Laboratory; Xingbo Liu, West Virginia University; Gustavo Costa, NASA Glenn Research Center

Friday AM | October 22, 2021 On-Demand Room 9 | MS&T On Demand

Session Chairs: Kristina Lilova, Arizona State University; Gustavo Costa, NASA Glenn Research Center

Invited

Thermodynamics in the Design and Performance of Glass: *Joseph Ryan*¹; ¹Pacific Northwest National Laboratory

Invited

In-situ Hydrothermal Synthesis Calorimetry on Nonclassical Pathways of Nickel-aluminum Layered Double Hydroxide (NiAl-LDH) Formation: Xianghui Zhang¹; Cody Cockreham¹; Esra Mertsoy¹; Hui Sun²; Xiaofeng Guo¹; Hongwu Xu³; Di Wu¹; ¹Washington State University; ²East China University of Science and Technology; ³Los Alamos National Laboratory

Strength, Deformation, and Equation of State of Tungsten Carbide to 66 GPa: Benjamin Brugman¹; Feng Lin²; Mingda Lv³; Curtis Kenney-Benson⁴; Dmitry Popov⁴; Lowell Miyagi²; Susannah Dorfman³; ¹Arizona State University; ²University of Utah; ³Michigan State University; ⁴HPCAT, Argonne National Lab

Incorporation of Thorium and Uranium in the Monazite Structure by Wet Chemistry Route: Synthesis, Sintering and Long-term Behavior: Nicolas Dacheux¹; Danwen Qin²; Alison Roche¹; Adel Mesbah³; Nicolas Clavier³; Stephanie Szenknect⁴; Renaud Podor³; ¹University of Montpellier; ²ENSCM; ³CNRS; ⁴CEA

Thermodynamic Properties of Special Alloys of the Ti-Al System Formed under SHS Conditions: Borys Sereda¹; Dmytro Sere

Thermal and Microstructural Evolutions in Kerogen-rich Marcellus Shale: Cody Cockreham¹; Xianghui Zhang¹; Miu Lun Lau²; Min Long²; Xiaofeng Guo¹; Hongwu Xu³; Di Wu¹; ¹Washington State University; ²Boise State University; ³Los Alamos National Laboratory

High-temperature Structure and Thermodynamics of Cerium Silicates, A-Ce₂Si₂O₃, and Ce_{4,67}(SiO₄)₃O: Andrew Strzelecki¹; Kyle Kriegsman²; Paul Estevenon³; Vitaliy Goncharov²; Jianming Bai⁴; Stephanie Szenknect³; Adel Mesbah³; Di Wu²; John McCloy⁵; Nicolas Dacheux³; Xiaofeng Guo²; ¹Washington State University; ²Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University; ³ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Site de Marcoule; ⁴National Synchrotron Light Source II, Brookhaven National Laboratory; ⁵Mechanical and Materials Engineering, Washington State University

Technical Program

Determination of the Activation Energy of the Formation of Intermetallic Compounds in the Ni-Al and Ti-Al System upon Receipt of Special Alloys: Borys Sereda¹; Dmytro Sereda¹; Yuriy Belokon²; ¹Dneprovsky State Technical University; ²Zaporizhzhya National University

MATERIALS-ENVIRONMENT INTERACTIONS

Thermodynamics of Materials in Extreme Environments — On-Demand: Thermodynamics of Nuclear Materials and Minerals

Sponsored by: ACerS Basic Science Division, ACerS Energy Materials and Systems Division

Program Organizers: Xiaofeng Guo, Washington State University; Kristina Lilova, Arizona State University; Kyle Brinkman, Clemson University; Alexandra Navrotsky, Arizona State University; Jake Amoroso, Savannah River National Laboratory; Xingbo Liu, West Virginia University; Gustavo Costa, NASA Glenn Research Center

Friday AM | October 22, 2021 On-Demand Room 9 | MS&T On Demand

Session Chairs: Xiaofeng Guo, Washington State University; Gustavo Costa, NASA Glenn Research Center

Invited

Thermodynamics of An-Cl Complexes at High Temperature and Pressure: *Ping Yang*¹; Xiaobin Zhang¹; Morgan Kelley¹; Jason Baker¹; Hakim Boukhalfa¹; Artaches Migdissov¹; Hongwu Xu¹; ¹Los Alamos National Laboratory

Invited

Dissolution of Uranium Based Dioxide in Nitric Acid: Impact of Fission Products and Microstructure: Nicolas Dacheux¹; Thomas Barral²; Thibault Kaczmarek²; Malvina Massonnet²; Laurent Claparede¹; Nicolas Clavier³; Stephanie Szenknect²; Renaud Podor³; ¹University of Montpellier; ²CEA; ³CNRS

Invited

Thermodynamic Properties of Fluoride Molten Salts from Modeling and Simulations: Shunli Shang¹; Jorge Paz Soldan Palma¹; Brandon Bocklund¹; Nathan Smith¹; Yi Wang¹; Hojong Kim¹; Zi-Kui Liu¹; ¹Penn State University

Invited

Effective Assessment and Thermodynamic Database Development for Potential Nuclear Reactor Molten Salt Systems: Theodore Besmann¹; Juliano Schorne Pinto¹; Jacob Yingling¹; Johnathan Ard¹; Mina Aziziha¹; Matthew Christian¹; Amir Mofrad¹; Mahmut Aslani¹; Jake McMurray²; ¹University of South Carolina; ²Oak Ridge National Laboratory

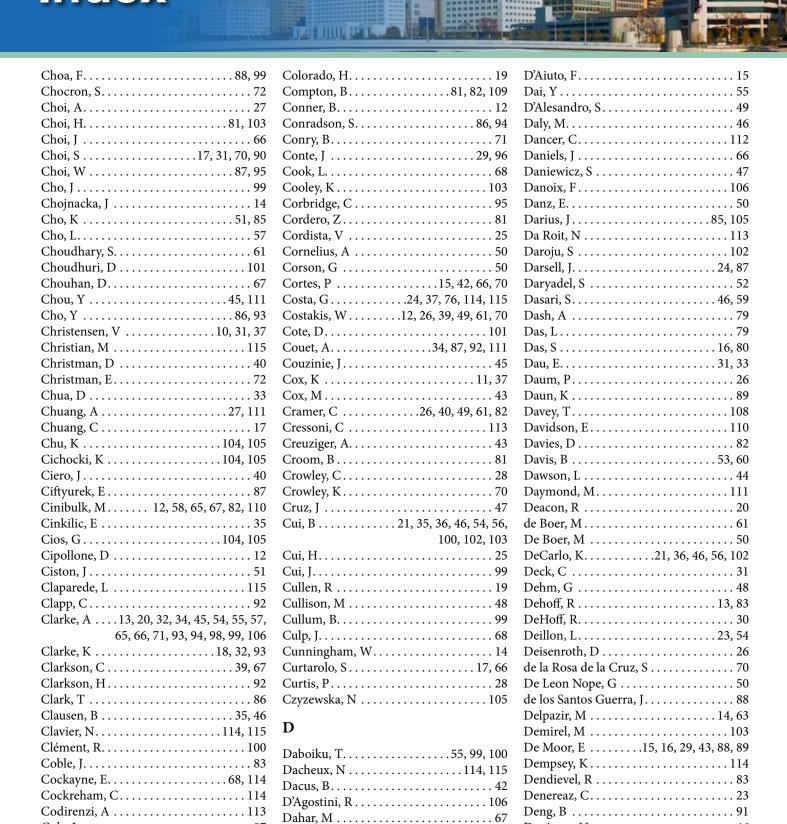
Energetics of La, Nd-containing Hydroxylbastnaesite (La_{1-x}Nd_xCO₃OH) Solid Solutions: Vitaliy Goncharov¹; Haylea Nisbet²; Andrew Strzelecki¹; Chris Benmore³; Hongwu Xu²; Artaches Migdisov²; Xiaofeng Guo¹; ¹Washington State University; ²Los Alamos National Laboratory; ³Argonne National Laboratory

Influence of Local Charge and Magnetic Ordering on Point Defect Properties in Magnetite (Fe $_3$ O $_4$): Shivani Srivastava 1 : Blas Uberuaga 2 : Mark Asta 3 : 1 University of California Berkeley; 2 Los Alamos National Laboratory; 3 University of California Berkeley; Lawrence Berkeley National Laboratory

Energetics of K-,Ga- Titanate Hollandites: *Nancy Birkner*¹; Mingyang Zhao¹; Kyle Brinkman¹; ¹Clemson University

A	Akman, A31, 63	Annamareddy, A52
Abali, B	Akono, A	Annerino, A
	Akram, N	Anoop Krishnan, N 91
Abbasi Gharacheh, M	Akter, M	Ansel, R
Abdallah, I	Alaerts, L	Anstine, M
Abdalla, M	Al-ajrash, S	Antonov, S
Abdeljawad, F	Albe, K	Anwar, S
Abdelmoula, M	Albqmi, M	Aoyagi, K83, 85, 90, 104, 105
Abdullah, A	Alderman, V	Apblett, A
Abernathy, H96	Alexander, M	Apel, C61
Abidov, A	Alexandre Falcão, E 88	Apostolov, Z65, 82, 110
Abir, A	Alghalayini, M	Aradi, E
Abney, M	Ali, A	Araujo, A54, 98
Abott, G83	Ali, S	Ard, J
Aboulkhair, N	Allan, S 22, 25, 40, 47, 57, 75, 106, 107	Ardrey, K
Abraham, J	Allard, L	Armstrong, B 82
Abrahams, R	Allen, A	Arndt, M
Abranovic, B	Allen, F	Arnold, A 90
Abu-Mahfouz, I 44	Allison, J	Arnold, B
Abusalma, H 62	Allix, M 60, 112	Aroh, J
Acemi, C	Allu, A	Arora, G
Achraf, H		Arrabal, R
Achuthan, A	Allu, P	
Ackelid, U 13, 27, 40, 41, 49, 50,	AlManager P	Arregui-Mena, D
61, 77, 83, 85	AlMangour, B	Arroyave, R
Ackley, B	Almansour, A	Arul Kumar, M
Acord, K	Almer, J	Arya, V
Acosta, C	Alnaser, H	Asadov, I
Adams, C	Alneyadi, S	Asaoka, J
Adams, V	Alqaradawi, S96	Asgar, H
	Alqaydi, H	Asherloo, M
Adapala, P	Alshehhi, N	Aslani, M
Addiego, C	Alvarado-Orozco, J	Aspuru-Guzik, A 80
Adelabu, O	Alvarez, A	Asta, M
Adler, T	Alverson, M	Asthana, R
Adnan, S	Ambrosini, A	Athmer, C
Afflerbach, B	Amin-Ahmadi, B 27	Atreya, V
Agarwal, A	Amiri, A111	Atwater, M
Agarwal, S	Amirian, B97, 108	Auguste, R14
Agrawal, A	Amoroso, J	Averback, R110
Agrawal, D	Anasori, B	Averianov, T
Aguiar, N	Andani, M	Avetian, S
Aguirre, T 82	Anderson, D	Awasthi, S
Ahmadi, K	Anderson, K 18, 43, 60, 64, 65, 97	Aydogan, B
Ahsan, R 62	Anderson, P	Aykol, M
Aidhy, D55, 110	Andrew, C	Aymerich Armengol, R 60
Aikin, N	Andrew, J	Azadeh, M
Aitkaliyeva, A	Andrews, C	Azersky, C
Ajjarapu, K	Angilella, A	Aziziha, M
Äkbari, E	An, H	
Akdim, B	Anjum, F	В
Akhanda, M	An, K	
Akhbari, S	Ankit, K	Babu, S
Akinbogun, T	лики, к	Bachmann, F35, 43, 71
0 ,		

	G
	M
Bagi, S	
Bagues, N	
Bahl, S	50 Bian, H
Bai, J	
Bai, X	D
Bai, Y	
Bajpai, S	
Baker, C	
Baker, I	80, 91, 98 Birkner, N
	95 Birringer, R
• • • • • • • • • • • • • • • • • • • •	
	M
	D
· · · · · · · · · · · · · · · · · · ·	
	n, Y 50, 63, 85 Boan, B 68
· ·	
•	A
7 1 7 7	Y
	34 Bokova, M
	7
Banerjee, N	
Banerjee, R 27, 45, 46, 51, 58, 59, 66 Benmore	C
Banerjee, S	
Banerjee, T 49 Berkson,	M
	E
•	
	d, D
	T
	12, 13, 27, 39, 40, 49, 50, Borkar, T
Baral, M	61, 62, 80 Borrel, L92
	I20, 35, 46, 72, 101 Bos, C
	, A
	, H
Duroei, R Dildiduwa	, 11


In-Person Event: OCTOBER 17-20, 2021 • COLUMBUS, OHIO On-Demand Content available:

On-Demand Content available: OCTOBER 22-DECEMER 31, 2021

Bousquet, E. 10 10 10 11 12 13 14 14 17 17 16 16 18 14 14 17 17 18 16 18 18 18 18 18 18			
Bouven, J. 1.10 C C Chan, M. 1.6, 38 Bowen, J. 1.10 C C Chan, S. 2.0, 55 S Bower, A 98 Boyde, D . 1.12 Cabill, J. 82, 108 Charrico, S. 3.6 S G. 2.6 S J. 2.7	Bouobda Moladje, G 110	Byerly, K	Chan, H
Bower, A. 98 Bower, A. 98 Bower, A. 98 Brady, M. 28, 87, 111 Braem, A. 103 Bradk, M. 28, 87, 111 Braem, A. 103 Brankhovic, S. 23 Brath, C. 99 Bratten, A. 11, 51 Braem, C. 99 Braun, C. 99 Braun, C. 99 Breewer, G. 68 Brewer, I. 30 Breewer, I. 30 Breewer, I. 30 Breewer, I. 30 Breewer, I. 30 Brighsm, B. 28 Brighsm, B. 28 Brighswell, I. 106 Brighsm, B. 28 Brighswell, I. 106 Brighsm, A. 106 Brighsm, B. 28 Brighswell, I. 107 Bridge, J. 141 Brimman, K. 19, 24, 33, 37, 44, 53 Brighsm, B. 28 Brighsm, B. 28 Brighsm, B. 29 Brinkman, D. 94 Brinkman, R. 100 Brinkman, R. 101 Brown, D. 46, 51 Brinkman, R. 101 Brown, D. 46, 51 Brown, J. 25 Brigh, S. 20, 52 Brinkman, B. 104 Brown, B. 51 Brown, B. 51 Brown, B. 51 Brown, J. 52 Brown, J. 53 Brown, J. 54 Br	Bousquet, E. 10	, ,	Chan. M 16, 38
Bowel, A 98 Caccia, M 1.9, 45 Charbonnier, N 100	-	C	
Boyd. D			
Brackman, P. 13 Cai, W. 92 Carbriton, S. 36 Brackman, P. 13 Cai, W. 92 Cakmak, E. 103 Bradth, O. 36, 37, 103 Callahan, P. 34, 57 Cabret, R. 23 Carbriton, S. 36 Brankovic, S. 22 Campbell, B. 36 Cabragape, M. 56 Cabratin, D. 19, 48, 60 Chartogadhyay, K. 18, 94 Charden, R. 27 Campbell, C. 41 Charbet, R. 28 Campbell, C. 41 Charbet, R. 27 Cambell, J. 111 Campbell, C. 41 Charbet, R. 28 Campbell, Q. 26, 49, 62 Chavet, F. 83 Charwet, R. 83 Chen, R. 33, 59 Chen, A. 86 Chen, A. 86 Cao, P. 24, 247, 109 Chen, B. 94 Chen, A. 86 Cao, P. 24, 247, 109 Chen, B. 94 Chen, A. 86 Chen, A. 86 Cao, P. 24, 247, 109 Chen, B. 94 Chen, B. 94 Chen, G. 73, 79 Chen, J. 20, 25, 101 Chen, G. 73, 79 Chen, J. 20, 25, 101 Chen, G. 73, 79 Chen, J. 20, 25, 101 Chen, G. 73, 79 Chen, J. 20, 25, 101 Chen, G. 73, 79 Chen, J. 20, 25, 101 Chen, G. 73, 79 Chen, J. 20, 25, 101 Chen, G. 73, 79 Chen, J. 20, 25, 101		Caccia, M	
Brackman, P. 3	Boyd, D		Chari, C
Bracem, M. 103 Braem, M. 103 Braemld, O. 36, 37, 103 Brandhol, O. 36, 37, 103 Brather, A. 11, 51 Brauer, D. 19, 34, 44, 98 Brauer, D. 19, 34, 44, 98 Breath, J. 1111 Brauer, G. 99 Brechtl, J. 1111 Braer, G. 66 Brewer, G. 68 Brewer, G. 68 Brewer, G. 68 Brewer, G. 68 Brewer, G. 70 Brewer, G. 70 Brewer, G. 70 Brewer, G. 70 Bridge, J. 110 Briano Murillo, L. 70 Bridge, J. 110 Brinkman, R. 19 Briggs, S. 14, 28, 42, 51, 86 Brigham, B. 28 Brigham, B. 28 Brightwell, E. 106 Brinkman, C. 19, 24, 33, 37, 44, 53, 65, 95 Brigham, B. 28 Brinkman, C. 19, 24, 33, 37, 44, 53, 65, 96, 106, 107 Brown, D. 40, 51 Brown, B. 51 Brown, B. 51 Brown, D. 46, 61 Brown, D. 46, 61 Brown, B. 51 Brown, D. 46, 61 Brown, B. 51 Brown, D. 46	Brackman, P		Chariton, S
Bramm A 103 Callahan, P 34,57 Charvet, R 23 Brank, O. 36,37, 103 Calla, N 51 Chasse, K 63 Brather, A 11,51 Campbell, B 36 Chattin, D 19,48,60 Brauer, D 19,34,44,98 Campbell, C 41 Chattopadhyay, K 18,94 Breneth, I 111 Campbell, C 24,96 Chauthan, V 28,108 Brewer, I 68 Cantwell, W 27 Chawlan, N 33 Brewer, G 68 Cao, L 20,35,46,72,101 Chen, B 4 Briaw, B 68 Cao, P 42,47,109 Chen, B 9,94 Brigde, J 114 Carlos, C 43 Chen, B 9,94 Brigham, B 2 Carlos, C 43 Chen, B 9,94 Brigham, B 2 2 Carlos, C 43 Chen, B 9,2 Brighawell, E 10 Carlos, C 43 Chen, B 9,2 2,1 35	Brady, M		Charpagne, M
Brankt, O. 36, 37, 103 Calta, N. 51 Chatsin, D. 19, 48, 60 Brankovic, S. 28 Campbell, B. 36 Chattin, D. 19, 48, 60 Earlien, A. 11, 51 Brauer, D. 19, 34, 44, 98 Campbell, C. 41 Chattopadhyay, K. 18, 94 Chauter, D. 19, 34, 44, 98 Campbell, Q. 26, 49, 62 Chauter, E. 83 Chavell, N. 28, 108 Chauter, E. 83 Chauter, E	·		
Bratken, A. 11, 51 Bratten, D. 19, 34, 44, 98 Braun, C. 99 Brauer, D. 19, 34, 44, 98 Braun, C. 99 Brechtl, J. 1111 Brechtl, J. 1111 Brechtl, J. 1111 Briman, J. 106 Gao, L. 20, 35, 46, 72, 101 Gao, P. 42, 47, 109 Gar, V. 16 Brigham, B. 28 Brigham, B. 28 Brigham, B. 28 Brigham, B. 28 Brigham, B. 29 Brinkman, D. 89 Brinkman, C. 19, 24, 33, 37, 44, 53, 53 Garroll, J. 21, 20, 25, 101 Brinkman, K. 19, 24, 33, 37, 44, 53, 67, 65, 76, 95, 96, 114, 115 Brinkman, R. 19, 24, 33, 37, 44, 53, 67, 20, 101 Brown, A. 106 Brown, A. 106 Brown, A. 106 Brown, C. 114 Brown, B. 511 Brown, B. 511 Brown, B. 511 Brown, J. 32 Caspary Foroker, M. 91 Brown, J. 32 Caspary Foroker, M. 91 Bruckman, L. 70 Bruder, E. 98, 99, 111 Bruckman, L. 70 Bruder, E. 98, 99, 111 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brunkman, C. 104 Garlos, L. 72 Casuhcha, R. 114 Castro, R. 34, 44, 45, 93, 113 Brown, J. 32 Caspary Foroker, M. 91 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brunkman, C. 104 Care, R. 114 Brown, B. 511 Casukhcla, R. 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,			
Bratten, A. 11, 51 Campbell, C. 44 Paraucr, D. 19, 34, 44, 98 Campbell, Q. 26, 49, 62 Paraun, C. 99 Brechtl, J. 111 Campbell, R. 33, 59 Brechtl, J. 111 Canumalla, R. 33, 59 Chawka, N. 30 Chen, A. 86 Parewer, G. 68 Cao, P. 42, 47, 109 Chen, B. 94		Calta, N	
Brauer, D. 19, 34, 44, 98 Brechtl, J. 1111 Canumalla, R. 33, 59 Cao, L. 20, 35, 46, 72, 101 Cao, P. 42, 47, 109 Chen, D. 48, 111 Capolungo, L. 20, 35, 36 Carlos, C. 43 Brigham, B. 28 Brigham, B. 28 Brigham, B. 28 Brigham, B. 29 Brinkman, D. 89 Brinkman, K. 19, 24, 33, 37, 44, 53, 65, 95, 96, 114, 115 Brinkman, K. 19, 24, 33, 37, 44, 53, 65, 95, 96, 114, 115 Brinkman, R. 100 Brown, A. 100 Brown, A. 100 Brown, B. 511 Brown, D. 46, 51 Brown, J. 32 Carper, C. 114 Carrer, R. 11, 49 Brown, D. 46, 51 Brown, J. 32 Brown, J. 32 Brown, J. 32 Brown, J. 33 Brown, L. 170 Bruder, E. 98, 99, 111 Castro, R. 102 Cebla, M. 88 Bruner, R. 102 Bruner, R. 104 Carell, G. 70 Casukhela, R. 22, 34, 68, 96, 101 Bruner, R. 102 Cebla, M. 88 Bruner, R. 104 Bruner, R. 105 Bruner, R. 106 Bruner, R. 107 Casukhela, R. 20, 35, 89 Bull, A. 47 Chauhan, V. 22, 81, 88 Carver, D. 42, 46 Chen, J. 32, 73, 81, 104 Chen, J. 33, 48, 53, 67 Chen, T. 36, 48, 58, 110 Che		Campbell, B	
Braun, C. 99 Brecht, J. 111 Braun, C. 99 Brewer, G. 68 Brewer, G. 68 Brewer, J. 30 Brewer, G. 68 Brewer, J. 30 Bream, C. 99 Brian Murillo, I. 70 Bridge, J. 114 Briggs, S. 14, 28, 42, 51, 86 Brigham, B. 28 Brightwell, E. 106 Brinkman, D. 89 Brinkman, K. 19, 24, 33, 37, 44, 53, 55 Brinkman, K. 19, 24, 33, 37, 44, 53, 65 Brinkman, K. 19, 24, 33, 37, 44, 53, 65 Brinkman, K. 19, 24, 33, 37, 44, 53, 65 Brinkman, K. 19, 24, 33, 37, 44, 53, 65 Brown, A. 106 Brown, B. 101 Brown, B. 101 Brown, D. 46, 51 Brown, J. 32 Brown, L. 12 Bruckman, L. 70 Bruder, E. 98, 99, 111 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Bruckman, L. 70 Bruder, E. 98, 99, 111 Brugman, B. 1144 Brune, R. 112 Brugman, B. 1144 Brune, R. 112 Brugman, B. 1144 Brune, R. 12 Brugman, B. 1144 Brune, R. 12 Brugman, B. 1144 Brune, R. 12 Bru	Bratten, A		Chattopadhyay, K
Brecht]	Brauer, D		Chauhan, V
Brecht, J. 111 Canumalla, R. 33,59 Chawla, N. 30 Brenneman, J. 106 Cao, L. 20,35,46,72,101 Chen, B. 94 Brewer, G. 68 Cao, P. 42,47,109 Chen, D. 48,111 Briano Murillo, L. 70 Cao, Y. 16 Chen, D. 48,111 Briggs, S. 14,28,42,51,86 Carlos, C. 43 Chen, D. 48,111 Brigham, B. 28 Sarlson, K. 19,33,44,53,65,95 Cheng, E. 34 Brinkman, D. 89 Carlson, K. 19,33,44,53,65,95 Cheng, R. 21,35 Brinkman, K. 19,24,33,37,44,53 Garnow, T. 12,67 Cheng, K. 120,25,101 Brinkman, K. 19,24,33,37,44,53 Garrell, J. Carrell, J. Carrell, J. Chen, K. Cheng, K. 7.9 Brinkman, K. 19,24,33,37,44,53 Garrell, J. Carrell, J. Carrell, J. Carrell, J. Chen, K. Chen, J. Sa. Chen, K. 9.9 Chen, K. 1.1 Chen, K.	Braun, C99		Chauvet, E
Brenneman J.			
Brewer, G. 68 Brewer, L. 30 Cao, P. 4.24, 47, 109 Chen, D. Chen, B.		Canumalla, R	
Brewn L		Cao, L	
Brewer, I		Cao, P	
Briano Murillo, 1 70			Chen, D
Briggs, S. 14, 28, 42, 51, 86 Briggs S. 14, 28, 42, 51, 86 Briggham, B. 28 Brightwell, E. 106 Brinkman, D. 89 Brinkman, K. 19, 24, 33, 37, 44, 53, 65, 76, 95, 96, 114, 115 Brinkmann, K. 19 Brinkmann, K. 10 Brin	Briano Murillo, L		Chen, G
Brighs, S. 14, 28, 42, 51, 86 Brighm, B. 28 Carlos, L. 72 Carlos, K. 19, 33, 44, 53, 65, 95, 106 Shrinkman, D. 89 Brinkman, K. 19, 24, 33, 37, 44, 53, 65, 76, 95, 96, 114, 115 Carrillo, G. 70 Carrillo, G. 70 Carrillo, G. 70 Carrillo, G. 70 Carrollo, J. 12 Carrollo, J. 14	Bridge, J		Cheng, E
Brigham, B. 28 Carlson, K 19, 33, 44, 53, 65, 95 Cheng, R 21, 35 Cheng, S 98 Prinkman, D 88 Sprinkman, K 19, 24, 33, 37, 44, 53, 65, 96, 96, 114, 115 Garrelter, J 51 Carrelter, J 51 Carrelter, J 51 Carrelter, J 51 Carrell, J 12 Carrelter, J 51 Carrell, J 51 Carrell, J 52 Cheng, Z 79 Chen			
Brightwell, E		Carlos, L	
Brinkman, D 89 Garmody, T 12,67 Cheng, X 79 Brinkman, K 19, 24, 33, 37, 44, 53, 65, 76, 95, 96, 114, 115 Carpenter, J 51 Cheng, Z 108 Brinkmann, K 19 Carrelllo, G 70 Chen, I 66 Chen, J 87, 98 Brion, W 90 Carroll, J 12 Carroll, M 87 Chen, K 91 Brown, A 106 Carvel, M 87 Chen, I 10 Chen, J 87, 98 Brown, B 51 Carvell, M 87 Chen, K 91 Brown, D 46, 51 Carver, K 83 Chen, C 11, 41, 52, 81, 102 Brown, J 32 Casamenti, E 23 Chen, R 11 Bruckman, L 70 Caspary Toroker, M 91 Chen, T 36, 48, 58, 110 Bruder, E 98, 9111 Castro, R 34, 44, 45, 93, 113 Chen, Y 10, 35, 37, 45, 55, 110, 111 Bruder, E 98, 91 Ceclia, C 107 Chen, Y 15, 20, 23,		Carlson, K 19, 33, 44, 53, 65, 95,	ě
Brinkman, D 89 Brinkman, K 19, 24, 33, 37, 44, 53, 65, 76, 95, 96, 114, 115 Carroll, G 70 Cheng, Z 108 Brinkman, K 19 Carroll, G 70 Chen, L 1 66, 76, 95, 96, 114, 115 Brinkman, K 19 Carroll, G 70 Chen, L 1 66, 76, 95, 96, 114, 115 Brinkman, K 19 Carroll, G 70 Chen, L 1 66, 76, 95, 96, 114, 115 Brinkman, K 19 Carroll, M 87 Chen, L 1 66 Brown, A 106 Carroll, M 87 Chen, L 11, 3, 25, 27, 39, 81, 66, 79, 88 Brown, A 106 Carver, R 11, 49 Carvel, G 66, 7 Chen, K 9. 11 Brown, D 46, 51 Carver, D 42, 46 Carver, K 83 Chen, R 11, 11, 11, 11, 11, 11, 12, 12, 11, 12, 12	•	96, 106, 107	
Strinkman, K 19, 24, 33, 34, 44, 35,			Cheng, X
Brinkmann, K 19 Carrillo, G 70 Chen, I 66 Brion, W 90 Carroll, J 12 Chen, K 98 Brion, W 90 Carroll, M 87 Chen, K 91 Brown, A 106 Carrell, M 87 Chen, K 91 Brown, B 51 Carvelho da Silva, A 88 82, 84, 111 Brown, D 46,51 Carvelho da Silva, A 88 82, 84, 111 Brown, J 32 Casamenti, E 23 Chen, Q 114, 41, 52, 81, 102 Bruckman, L 70 Casamenti, E 23 Chen, S 73, 107 Bruder, E 98, 99, 111 Castro, R 34, 44, 45, 93, 113 Chen, Y 10, 35, 37, 45, 55, 110, 111 Brune, R 112 Cebela, M 88 Cebela, M 88 Bu Aamiri, O 24 Cecilia, C 107 Chen, Y 15, 20, 23, 48, 68, 96 Bulka, P 25, 49, 58 Bukka, V 38, 53, 68, 75 Cersoi, T 42 Chen, Y	Brinkman, K 19, 24, 33, 37, 44, 53,		Cheng, Z
Brinkmann, K 19 Carroll, J. 12 Chen, J. 87,98 Brion, W 90 Carroll, J. 12 Chen, K. 91 Brown, R 110 Carroll, M. 87 Chen, K. 91 Brown, A. 106 Carvalho da Silva, A. 88 62, 84, 111 Brown, B. 51 Carver, D. 42, 46 Chen, Q. 11, 41, 52, 81, 102 Brown, D. 46, 51 Carver, K. 83 Chen, R. 11 Brown, L. 12 Caspary Toroker, M. 91 Chen, T. 36,48,58,110 Bruder, E. 98, 99, 111 Castro, R. 34,44,45,93,113 Chen, T. 36,48,58, 110 Brune, R. 12 Cebe, P. 26 Chen, T. 13,64,85,5110 Brune, V. 93 Cebe, P. 26 Chen, Y. 15,20,23,48,68,96 Brune, V. 93 Cebe, P. 26 Chen, Y. 15,20,23,48,68,96 Bui, P. 25,49,58 Cestain, J. 41 Cherpy, N. 60	65, 76, 95, 96, 114, 115		Chen, I
Brion, W 90 Carroll, M 87 Chen, K 91 Brockman, R 110 Carretr, R 11,49 Chen, L 11,13,25,27,39,81, Brown, A 106 Carvetr, R 11,49 Chen, L 11,13,25,27,39,81, Brown, B 51 Carvalho da Silva, A 88 Chen, L 11,13,25,27,39,81, Brown, C 114 Carvelho da Silva, A 88 Chen, Q 11,14,15,25,81,102 Brown, J 32 Casver, K 83 Chen, R 11 Brown, L 12 Cassumenti, E 23 Chen, S 73,107 Brucker, E 98,99,111 Castro, R 34,44,45,93,113 Chen, W 10,35,745,55,110,111 Brugan, B 114 Brune, R 12 Cebela, M 88 Chen, Y 15,20,23,48,68,96, Strune, V 93 Cebela, M 88 Chen, Y 15,20,23,48,68,96, Bukkey, M 50 Cempura, G 63 Chernyshikhin, S 50 Bullard, D 106 Char,			
Brockman, R 110 Carter, R 11, 49 Chen, L 11, 13, 25, 27, 39, 81, 82, 84, 111 Brown, A 106 Carver, R 11, 49 Chen, L 11, 13, 25, 27, 39, 81, 82, 84, 111 Brown, B 51 Carver, D 42, 46 Chen, Q 11, 41, 52, 81, 102 Brown, D 46, 51 Carver, K 83 Chen, R 111 Brown, L 12 Casamenti, E 23 Chen, S 73, 107 Brown, E 98, 99, 111 Castro, R 34, 44, 45, 93, 113 Chen, T 36, 48, 58, 110 Bruder, E 98, 99, 111 Casukhela, R 22 Cebela, M 88 Chen, Y 10, 35, 37, 45, 55, 110, 111 Brune, V 93 Cebela, M 88 Cebela, M 88 Chen, Y 15, 20, 23, 48, 68, 96, 60 Chen, Y 15, 20, 23, 48, 68, 96, 60 Chen, Y 15, 20, 23, 48, 68, 96, 60 Chen, Y 15, 20, 23, 48, 68, 96, 60 Chen, Y 15, 20, 23, 48, 68, 96, 60 Chen, Y 16, 20, 20 Cher, Y 15, 20, 23, 48, 68, 96, 60 Chen, Y 16, 20 Cher, Y 15, 2			
Brown, A 106 Carvelho da Silva, A 88 82, 84, 111 Brown, B 51 Carver, D 42, 46 Chen, Q 11, 41, 52, 81, 102 Brown, C 114 Carver, K 83 Chen, R 11 Brown, D 46, 51 Casamenti, E 23 Chen, S 73, 107 Brown, L 12 Caspary Toroker, M 91 Chen, T 36, 48, 58, 110 Bruckman, L 70 Castro, R 34, 44, 45, 93, 113 Chen, T 36, 48, 58, 110 Bruder, E 98, 99, 111 Casukhela, R 22 Chen, W 10, 35, 37, 45, 55, 110, 111 Bruder, E 98, 99, 111 Cebela, M 88 Chen, W 10, 35, 37, 45, 55, 110, 111 Bruder, E 98, 99, 111 Cebela, M 88 Chen, W 10, 35, 37, 45, 55, 110, 111 Bruder, E 98, 99, 111 Cebela, M 88 Chen, W 10, 35, 37, 45, 55, 110, 111 Bruder, E 98, 99, 111 Cecilia, C 107 Chen, Z Chen, X Chen, X Chen, X Chen, X		Carroll, M	
Brown, A 106		Carter, R	
Brown, B 51 Carver, D 42, 46 Chen, Q 11, 41, 52, 81, 102 Brown, C 114 Carver, K 83 Chen, R 11, 41, 52, 81, 102 Brown, D 46, 51 Caswer, K 83 Chen, R 11 Brown, L 12 Caspary Toroker, M 91 Chen, S 73, 107 Bruckman, L 70 Castro, R 34, 44, 45, 93, 113 Chen, Y 10, 35, 37, 45, 55, 110, 111 Bruckman, L 70 Castro, R 34, 44, 45, 93, 113 Chen, Y 10, 35, 37, 45, 55, 110, 111 Bruckman, B 114 Cebela, M 88 Cebela, M 88 Brune, R 12 Cebela, M 88 Cebe, P 26 Celli, D 41 Chen, Y 15, 20, 23, 48, 68, 96 Chen, Y 15, 20, 23, 48, 68, 96 Buckley, M 50 Celli, D 41 Chen, Z 55 Bulka, V 38, 53, 68, 75 Cersoli, T 42 Chernyshikhin, S 50 Bullard, D 106 Chakraborty, P <td< td=""><td></td><td></td><td></td></td<>			
Brown, C 114 Carver, K 83 Chen, R 11 Brown, D 46, 51 Casamenti, E 23 Chen, S 73, 107 Brown, L 12 Caspary Toroker, M 91 Chen, K 10, 6, 6, 8, 5, 110 Bruder, E 98, 99, 111 Casukhela, R 22 Chen, W 10, 35, 37, 45, 55, 110, 111 Brume, R 91 Chen, W 10, 35, 37, 45, 55, 110, 111 Chen, W 10, 35, 37, 45, 55, 110, 111 Brune, R 93 Cebela, M 88 Chen, Y 15, 20, 23, 48, 68, 96, 66 Brune, V 93 Cebe, P 26 Chen, Y 15, 20, 23, 48, 68, 96, 66 Buk, V 93 Chen, Y 15, 20, 23, 48, 68, 96, 66 66 Chen, Y 15, 20, 23, 48, 68, 96, 66 Bulke, V 93 Chee, P 26 Cheili, D 42 Cherny, Y 60 Burler, T 25, 49, 58 Cherny, Y 11 Cherry, Y 60 Burler, T 25, 93, 99, 100 Chambers, T	Brown, B		Chen, Q
Brown, D 46,51 Casver, R 33 Chen, S 73,107 Brown, J 32 Caspary Toroker, M 91 Chen, T 36,48,58,110 Brown, L 12 Castro, R 34,44,45,93,113 Chen, W 10,35,37,45,55,110,111 Bruckman, L 70 Casukhela, R 22 Chen, W 10,35,37,45,55,110,111 Bruder, E 98,99,111 Casukhela, R 22 Chen, Y 10,35,37,45,55,110,111 Cebela, M 88 Cebela, M 88 Chen, Y 15,20,23,48,68,96 Brune, R 12 Cecilia, C 107 Chen, Y 15,20,23,48,68,96 Bu Aamiri, O 24 Cempura, G 63 Chern, Y 15,20,23,48,68,96 Bui, P 25,49,58 Cecilia, C 107 Cherepy, N 60 Bulka, V 38,53,68,75 Cersoli, T 42 Chernatynskiy, A 28 Bullard, D 106 Chakraborty, A 20,35,89 Cherseer, R 65 Burshey, B 109 Chandrasekar, S <t< td=""><td>Brown, C</td><td></td><td></td></t<>	Brown, C		
Brown, J 32 Casament, E 23 Chen, T 36, 48, 58, 110 Brown, L 12 Caspary Toroker, M 91 Chen, T 36, 48, 58, 110 Bruckman, L 70 Castro, R 34, 44, 45, 93, 113 Chen, W 10, 35, 37, 45, 55, 110, 111 Bruckman, L 70 Casukhela, R 22 Chen, Y 10, 35, 37, 45, 55, 110, 111 Casuknela, R 22 Chen, Y 15, 20, 23, 48, 68, 96 Brune, R 12 Cebela, M 88 Brune, R 12 Cebe, P 26 Buckley, M 90 Celli, D 41 Cherrepy, N 60 Cempura, G 63 Cersoli, T 42 Chernatynskiy, A 28 Bulka, V 38, 53, 68, 75 Cesarano, J 11 Cherrushrakihin, S 50 Bullard, D 106 Chakraborty, A 20, 35, 89 Chesser, R 65 Chakraborty, P 101 Chesser, R 65 Chandran, K 54, 85, 97 Chiba, A 83, 85, 87, 90, 104, 105			
Brown, L 12 Caspary folker, M 15 Caspary folker, M 16 Caspary folker, M 17 Caspary folker, M 17 Caspary folker, M 18 Chen, W 10, 35, 37, 45, 55, 110, 111 Chen, W 10, 35, 37, 45, 55, 110, 111 Chen, X 107 Chen, X 107 Chen, Y 15, 20, 23, 48, 68, 96, 896, 896, 896, 896, 896, 896,			
Bruckman, L 70 Casukhela, R 22 Chen, X 107 Bruder, E 98, 99, 111 Cebela, M 88 Chen, Y 15, 20, 23, 48, 68, 96, Brugman, B 114 Cebela, M 88 Chen, Y 15, 20, 23, 48, 68, 96, Brune, R 12 Cebela, M 88 Chen, Y 103, 104, 105, 108 Brune, V 93 Celli, D 107 Chernyl Chen, Z 55 Bu Aamiri, O 24 Cempura, G 63 Cherrepy, N 60 Cherepy, N 60 Chernyshikhin, S 50 Bui, P 25, 49, 58 Cesarano, J 111 Chernyshikhin, S 50 Bulka, V 38, 53, 68, 75 Cha, E 96 Cherukara, M 16, 30, 90 Bullard, D 106 Chakraborty, A 20, 35, 89 Chesser, I 20 Bussey, J 70 Chambers, T 32 Chetvertak, I 63, 64 Chambers, T 32 Chiba, A 83, 85, 87, 90, 104, 105 Butler, B 109 Chandrasekar, S 83 Chica, E 19 <tr< td=""><td></td><td></td><td></td></tr<>			
Bruder, E 98, 99, 111 Casukhela, R 22 Chen, Y 15, 20, 23, 48, 68, 96, 98, 96, 103, 104, 105, 108 103, 104, 105, 108 103, 104, 105, 108 103, 104, 105, 108 108 103, 104, 105, 108 108 108 109 104, 105, 108 108 103, 104, 105, 108 108 108 103, 104, 105, 108 108 108 109 106 107 Cher, Z 55 55 55 Cherpy, N 60 60 60 Chernatynskiy, A 28 Chernatynskiy, A 28 Chernyshikhin, S 50 Chernyshikhin, S 50 Chernyshikhin, S 50 Cherukara, M 16, 30, 90 Chesser, I 20 Chesser, I 20 Chesser, I 20 Chesser, I 20 Chesser, R 65 Chesser, R 65 Chesser, R 65 Chetvertak, I 63, 64 Chetvertak, I 63, 64 Chetvertak, I 63, 64 Chendrasekar, S 83 Chia, E 19 Chia, E 19 Chia, E 19 Chia, E 19 Chia, B 19 <t< td=""><td></td><td>Castro, R34, 44, 45, 93, 113</td><td></td></t<>		Castro, R34, 44, 45, 93, 113	
Brugman, B 114 Cebela, NI. 88 103, 104, 105, 108 Brune, R. 12 Cebe, P. 26 Chen, Z. 55 Brune, V. 93 Cecilia, C. 107 Chen, Z. 55 Bu Aamiri, O. 24 Cempura, G. 63 Chernatynskiy, A. 28 Buckley, M. 50 Cersoli, T. 42 Chennyshikhin, S. 50 Bui, P. 25, 49, 58 Cesarano, J. 11 Cherukara, M. 16, 30, 90 Bulka, V. 38, 53, 68, 75 Chakraborty, A. 20, 35, 89 Chesser, I. 20 Bullard, D. 106 Chakraborty, P. 101 Chesser, R. 65 Burshley, F. 55, 93, 99, 100 Chandran, K. 54, 85, 97 Chikhalikar, A. 17 Chang, J. 18, 97 Chiiobasu, D. 66 Christiae, C. 89 Buzolin, R. 113 Chang, Y. 104 Christiae, M. 36 Chernyshikhin, S. 5.5 5.5 Chervikar, M. 16, 30, 90		Casukhela, R	
Brugman, B 114 Cebe, P 26 103, 104, 105, 108 Brune, R 12 Cecilia, C 107 Chen, Z 55 Brune, V 93 Celli, D 41 Cherepy, N 60 Bu Aamiri, O 24 Cempura, G 63 Chernatynskiy, A 28 Buckley, M 50 Cersoli, T 42 Chernyshikhin, S 50 Bui, P 25, 49, 58 Cesarano, J 11 Cherukara, M 16, 30, 90 Bulka, V 38, 53, 68, 75 Chak E 96 Chesser, I 20 Bull, A 47 Chakraborty, A 20, 35, 89 Chesser, R 65 Bullard, D 106 Chakraborty, P 101 Chesser, R 65 Burden, E 42 Chambers, T 32 Chiba, A 83, 85, 87, 90, 104, 105 Butler, B 109 Chandrasekar, S 83 Chica, E 19 Chandrasekar, S 83 Chikhalikar, A 17 Chang-Davidson, E 62 Chioibasu, D Chemidue Chang, Y 104 Chemidue		Cebela, M	
Brune, R 12 Cecilia, C 107 Chen, Z 55 Brune, V 93 Celli, D 41 Cherepy, N 60 Bu Aamiri, O 24 Cempura, G 63 Chernatynskiy, A 28 Buckley, M 50 Cersoli, T 42 Chernyshikhin, S 50 Bui, P 25, 49, 58 Cesarano, J 11 Cherukara, M 16, 30, 90 Bulka, V 38, 53, 68, 75 Cha, E 96 Chesser, I 20 Bull, A 47 Chakraborty, A 20, 35, 89 Chesser, R 65 Bullard, D 106 Chakraborty, P 101 Chetvertak, I 63, 64 Burden, E 42 Chambers, T 32 Chiba, A 83, 85, 87, 90, 104, 105 Bussey, J 70 Chandran, K 54, 85, 97 Chica, E 19 Butler, B 109 Chang-Davidson, E 62 Chikhalikar, A 17 Butterling, M 14 Chang, J 18, 97 Chiigh, W 66 Butterling, R 113 Chang, Y 104 Chiigh, W <	Brugman, B		103, 104, 105, 108
Brune, V 93 Cetha, C 107 Cherepy, N 60 Bu Aamiri, O 24 Cempura, G 63 Chernatynskiy, A 28 Buckley, M 50 Cersoli, T 42 Chernyshikhin, S 50 Bui, P 25, 49, 58 Cesarano, J 11 Cherukara, M 16, 30, 90 Bulka, V 38, 53, 68, 75 Cha, E 96 Chesser, I 20 Bull, A 47 Chakraborty, A 20, 35, 89 Chesser, R 65 Bullard, D 106 Chakraborty, P 101 Chetvertak, I 63, 64 Burden, E 42 Chambers, T 32 Chiba, A 83, 85, 87, 90, 104, 105 Bussey, J 70 Chandran, K 54, 85, 97 Chica, E 19 Butler, B 109 Chandrasekar, S 83 Chikhalikar, A 17 Butterling, M 14 Chang, J 18, 97 Chiisa, C Chioibasu, D 80 Buzolin, R 113 Chang, Y 104 Chrisilae, M 60	Brune, R		Chen, Z
Bu Aamiri, O. 24 Cempura, G. 63 Chernatynskiy, A 28 Buckley, M. 50 Cersoli, T. 42 Chernyshikhin, S 50 Bui, P. .25, 49, 58 Cesarano, J. 11 Cherukara, M. .16, 30, 90 Bulka, V. .38, 53, 68, 75 Cha, E. .96 Chesser, I. .20 Bull, A. .47 Chakraborty, A. .20, 35, 89 Chesser, R. .65 Bullard, D. .106 Chakraborty, P. .101 Chetvertak, I. .63 Burden, E. .42 Chambers, T. .32 Chiba, A. .83, 85, 87, 90, 104, 105 Butler, B. .109 Chandrasekar, S. .83 Chikhalikar, A. .17 Butterling, M. .14 Chang-Davidson, E. .62 Chioibasu, D. .80 Butzelin, R. .113 Chang, J. .18, 97 Chioibasu, D. .80 Chang, Y. .104 Cherishus M. .26 Cherishus M. .26 Chang, Y. .104 Cherishus M. .26 Cherishus M. .26			
Buckley, M. 50 Cersoli, T. 42 Chernyshikhin, S. 50 Bui, P. .25, 49, 58 Cesarano, J. 11 Cherukara, M. .16, 30, 90 Bulka, V. .38, 53, 68, 75 Cha, E. .96 Chesser, I. .20 Bull, A. .47 Chakraborty, A. .20, 35, 89 Chesser, R. .65 Bullard, D. .106 Chakraborty, P. .101 Chetvertak, I. .63, 64 Burden, E. .42 Chambers, T. .32 Chiba, A. .83, 85, 87, 90, 104, 105 Bussey, J. .70 Chandran, K. .54, 85, 97 Chica, E. .19 Butler, B. .109 Chandrasekar, S. .83 Chikhalikar, A. .17 Butterling, M. .14 Chang-Davidson, E. .62 Ching, W. .66 Butzeling, R. .113 Chang, J. .18, 97 Chioibasu, D. .80 Buckley, F. .66 Cherrical C. .89 Butterling, M. .14 .14 .14 .15 Butterling, M. .14 .14 .14 .15 .15 <td></td> <td></td> <td></td>			
Bui, P 25, 49, 58 Cesarano, J 11 Cherukara, M 16, 30, 90 Bulka, V 38, 53, 68, 75 Cha, E 96 Chesser, I 20 Bull, A 47 Chakraborty, A 20, 35, 89 Chetvertak, I 63, 64 Burden, E 42 Chambers, T 32 Chiba, A 83, 85, 87, 90, 104, 105 Butler, B 109 Chandran, K 54, 85, 97 Chica, E 19 Butler, T 55, 93, 99, 100 Chang-Davidson, E 66 Ching, W 66 Butterling, M 14 Chang, J 18, 97 Chioibasu, D 80 Buxblow, E 66 Chemidus M 26 Buxblow, E 66 Chemidus M 26 Chemidus M 26			
Bulk, P 25, 49, 58 Bukka, V 38, 53, 68, 75 Bull, A 47 Bullard, D 106 Burden, E 42 Bussey, J 70 Butler, B 109 Butler, T .55, 93, 99, 100 Butterling, M 14 Buzolin, R 113 Bushka, V 38, 53, 68, 75 Cha, E 96 Chakraborty, A 20, 35, 89 Chakraborty, P 101 Chambers, T 32 Chandran, K 54, 85, 97 Chiba, A 83, 85, 87, 90, 104, 105 Chandran, K 54, 85, 97 Chikhalikar, A 17 Chang-Davidson, E 62 Chang, J 18, 97 Chioibasu, D 80 Chiriac, C 89 Chemishus M 26		Cersoli, T	
Bulka, V 38, 53, 68, 75 Bull, A 47 Bullard, D 106 Burden, E 42 Bussey, J 70 Butler, B 109 Butler, T .55, 93, 99, 100 Butterling, M 14 Buzolin, R 113 Bushka, V 38, 53, 68, 75 Cha, E 96 Chakraborty, A 20, 35, 89 Chakraborty, P 101 Chambers, T 32 Chandran, K 54, 85, 97 Chica, E 19 Chikhalikar, A 17 Chang, J 18, 97 Chioibasu, D 80 Chiriac, C 89 Chiriac, C 89 Chemishus M 26			
Bullard, D	Bukka, V		
Bullard, D	Bull, A		Chesser, R
Burden, E. 42 Chakraborty, F 101 Chiba, A. 83, 85, 87, 90, 104, 105 Bussey, J. 70 Chambers, T. 32 Chiba, A. 83, 85, 87, 90, 104, 105 Butler, B. 109 Chandran, K. 54, 85, 97 Chica, E. 19 Chandrasekar, S. 83 Chikhalikar, A. 17 Chang-Davidson, E. 66 Ching, W. 66 Chang, J. 18, 97 Chioibasu, D. 80 Chang, Y. 104 Chiriac, C. 89 Chang, Y. 104 Chemidus M. 26	Bullard, D	•	Chetvertak, I
Bussey, J. 70 Chambers, T. 32 Chica, E. 19 Butler, B. 109 Chandran, K. 54, 85, 97 Chica, E. 19 Butler, T. .55, 93, 99, 100 Chandrasekar, S. 83 Ching, W. 66 Butterling, M. 14 Chang-Davidson, E. 62 Chioibasu, D. 80 Buzolin, R. 113 chang, Y. 104 Chiriac, C. 89 Chang, Y. 104 Chemique M. 26		•	
Butler, B. 109 Chandrasekar, S. 34, 83, 97 Chikhalikar, A. 17 Butler, T. .55, 93, 99, 100 Chang-Davidson, E. 66 Ching, W. 66 Butterling, M. .14 Chang, J. 18, 97 Chioibasu, D. 80 Buzolin, R. .13 chang, Y. .104 Chiriac, C. 89 Chang, Y. .104 Chmidle, W. .26			
Butler, T .55, 93, 99, 100 Butterling, M .14 Buzolin, R .113 Puchkov F .66 Chang-Davidson, E .62 Chang, J .18, 97 chang, Y .104 Ching, W .66 Chioibasu, D .80 Chiriac, C .89 Chemique M .26		Chandran, K	
Butler, T		Chandrasekar, S 83	
Buzolin, R			
Buzolin, R	Butterling, M	=	Chioibasu, D
Puchlary E Chaig, 1	Buzolin, R	•	Chiriac, C
Chang, Y			
	,	Chang, Y	

Colombo, P.....11, 25, 39, 58, 67, 81, 82,

109, 110

100, 108, 111

Dennett, C..... 14, 28, 42, 51, 86,

Derby, B	Drabold, D95	Edmunson, J
Der Loughian, C102	Drach, B51	Edwards, D
Derrick, J	Dragomir, M	Edwards, J
de Souza, F	Drazin, J	Egan, A
De Souza, R99	Drdlik, D	Egbu, J
Detemple, E	Drdlikova, K	Eguiluz, A
Detlefs, C	Driscoll, J	Eichhorn, A
Detor, A	Drobshoff, A 60	Einarsrud, M96
Detrois, M	Dryepondt, S	Eisazadeh, H
Detweiler, Z	Drygala, A	Ekaputra, C
Detwiler, K	Duan, B	Elavarthi, P
Devaraj, A	Duan, C	El-Awady, J
Devasia, R	Duarte, J	El-Azab, A
Devener, B	Dube, T	ElBakhshwan, M
DeVinney, M	Dubey, A	El Hayek, J
Dey, M	Dubey, S	Eliaz, N
Dhakal, D	Dubinin, O	Ellingson, R
Dhamade, H	Dudukovic, N	Ellis, D
Dhulipalla, A	Duff, A	Ellis, E
Diaz, A	Dugast, F	El Mahallawi, I
Dickerson, M 12, 39, 58, 65, 67, 109, 110	Duhan, S	El Rassi, J
Dickes, D	Du, J	Elsaied, M
DiDomizio, R	Dumre, B	Elsayed, A
Diehl, B	Dunand, D	Elsayed, H
Dietz, C	Duncan, R	Elseddawy, A14, 61
Diewald, E	Dunstan, M	Elsokaty, A
Dillon, S	Duong, E	Emge, I
DiMarco, B	Dupont, V	Eng, P
DiMarco, C	Dupuy, A	Enloe, C
Dimitrov, T	Durcan, P	Erdeniz, D
Ding, J	Durst, K	Eren, E
Ding, K98, 99, 111	Dursun, S	Erichsen, T
Ding, Q	Du, T	Ericks, A
Ding, Z30	Dutta, S	Erickson, J
Din, H	Duty, C	Erk, K
Doan-Nguyen, V54	Dvivedi, A	Escalona Gomez, A 70
Dolmetsch, T	Dvorak, J 50	Escamilla, M
Domenech, B	Dwek, M	Escano, L
Donaldson, O	Dwyer, C	Esfarjani, K
Dong, H	Dyatkin, B	Esparragoza, N
Dong, K	Dyck, O	Espinosa, G
Dong, W	Dylla-Spears, R	Estevenon, P
	Dziuba, O	Euser, V
Dong, X	Dziuba, O03	
Dong, Y	E	Everaerts, J
Donnelly, S	L	Everhart, W
D'Onofrio, M	Earthman, J	F
Doran, S	Eason, T	1
Dorfman, S	Echempati, R93	Faber, K
Dornelas, J	Echlin, M	Fabris, L
Do, T	Eckel, Z	Fagerstrom, E
Doude, H	Eckert, J 12, 26, 40, 49, 61, 62, 83	Fahrenholtz, W21, 55, 61, 66, 67, 85
Dozer, M	Edgehouse, K	Fahrmann, M
		,

Faierson, E	Fitzpatrick-Schmidt, G 101	Gall, D
Fajstrup, L	Flanagan, W	Gallegos-Perez, A
Falkowski, A	Flores Herrera, J 70	Galusek, D
Fan, A	Flores, K	Galyon Dorman, S
Fanchini, G	Floyd, A	Gamboa, B
Fan, G	Flynn, P	Gammage, M
Fang, X	Flynn, W	Gan, J
Fan, H	Fody, J	Gao, L
Fan, X 62	Folorunso, S	Gao, M20, 34, 45, 54, 55, 65, 66,
Fan, Z 15, 36, 48, 58, 73, 86, 110, 111	Fonda, R	99, 100, 111
Farber, E	Fontana, I	Gao, P
Faria, C	Fontanari, D	Gao, S
Farimani, A 80	Foreman, J	Gao, T
Farmer, W	Forsberg, C	Gao, W
Farnam, Y	Forsmark, J 50	Gao, X
Fattahov, A	Forth, J 80	Gao, Y
Fayyaz, O	Foster, D	Garboczi, E
Feathers, M 28	Foster, J	Garcia-Ayala, M
Fecht, H	Fox, C	García-Barruetabeña, J
Fedder, G	Fox, E	Garcia, D
Fei, F	Franchin, G	Garcia, E
Feigelson, B	Frankel, G	Garich, H
Feldhausen, T	Franks, G	Garner, F
Feldhoff, A 19, 33, 44, 53, 65, 95, 96	Frantz, J	Garnica-Gonzalez, P
Feng, B	Fraser, D	Garnsey, S
Feng, L	Fraser, H	Garretto, J
Feng, P	Frederick, C	Gault, B 60
Feng, Z	Free, B	Gautam, P
Fensin, S	Freiberg, D	Gavalda-Diaz, O
Fergus, J	French, R	Gazenbiller, E
Fernandex-Zelaia, P	Frenkel, A 86	Geigle, M
Fernandez-Sanchez, D	Friedman, L	Gemse, F
Fernandez-Zelaia, P	Fries, E 50	Geng, X
Fernandez-Zelai, P	Froeliger, T 83	Gentry, S
Ferrandez, A	Froemling, T	George, E
Ferrandez-Montero, A107	Frolov, T	George, J
Ferrari, B	Frömling, T	Gerczak, T
Ferraris, M	Fuentes, A	Gerhardt, R
Ferraris, S	Fukushima, M	Germain, L
Ferrigno, J	Fullwood, D	Gershen, A
Feteira, A	Furuhara, T	Gervais, C
Fetzer, A	Furuta, L	Gessner, I
Feygelson, B	Fu, Z	Ghanizadeh, S112
Fezzaa, K		Ghassemi-Armaki, H
Field, D	G	Ghazisaeidi, M
Field, K51, 110	C.LL T	Ghisi, N
Filho, L	Gabb, T	Ghosez, P
Findley, K30, 43, 57	Gadalla, O	Ghosh, A
Finkenauer, L 82	Gadikota, G	Ghosh, S
Fischer, M	Gaillard, C	Gibbons, S
Fischer, T	Gajjala, S	Gibson, D
Fisher, C11, 35, 101	Gaknar, R	Gifford, D
	Galciz, IVI	

Giglio, J	Goswami, R	Gupta, M
Gilbert, J	Gould, B	Gupta, N
Gillard, A50	Gould, J	Gupta, R52, 74, 89, 90
Gillespie, J 61	Gouma, P	Gupta, S 10, 18, 24, 32, 38, 53, 73, 79, 93
Gillespie, N	Gouné, M106	Gupta, V
Gill, S	Goyal, A	Gutzky, T
Gilmore, A	Goyal, T	Guziewski, M
Gin, S	Goyer, J	G. Víllora, E
Giorgio, T	Grady, Z	Gwalani, B
Giuliani, F	Graef, M	Gyekenyesi, A
Giuntini, D	Graeve, O	-, ,
Gladstein, A	Gram, M58, 67, 73, 112	Н
Glaesemann, S 60	Granberg, F42	
Glaessgen, E	Grant, D	Haase, C
Glatzel, U	Grant, G	Habib, R
Gleason, M	Grant, L	Hackett, G
Gleeson, B	Greaves, G	Hackler, C
Gliebe, K	Greenberg, B	Hadzhieva, Z113
Glotka, A	Greenberg, Z	Hagen, L
Gluck, A	Green, C	Haghdadi, N
		Haghshenas, M
Glunt, K	Greiner, L	Hagisawa, T104, 105
Gratenko, M	Gremillard, L	Haider, W
Gobert, C	Greve, D	Haik, M 19, 33, 44, 53, 65, 95, 96
Gockel, J 40, 41, 49, 51, 61, 67, 83	Griffiths, J	Haines, K
Godbole, E	Griffiths, R	Hai, X
Godlewski, L	Grigoropoulos, C	Ha, J
Goduguchinta, R	Grimme, C	Hajj, M 19, 33, 44, 53, 65, 95, 96
Goeksel, B	Groeber, M	Halbig, M
Goel, A	Groeger, A	Halder, R
Goldberg, R	Groff, T	Haley, J
Golub, M	Groiss, H	Hall, R
Golumbfskie, W	Grossin, D	Hall, T 24, 28, 31, 38, 52, 74, 89, 90
Goncharov, A95	Groth, B	Hamel, W
Goncharov, V	Grover, H	Han, C
Gone, A	Gruber, M	Handwerker, C 60
Gong, W	Grutzik, S98	Han, H
Gonzalez, J	Grydin, O	Han, J
Gonzalez-Julian, J	Grzesiak, D	Han, T
Goodman, J110	Guan, M	Han, X
Goodwin, F	Guarriello, R	Hao, L
Gopakumar, G	Gu, C	Haque, A
Gopalan, S53	Guillon, O	Hara, T94
Gopalan, V14	Gui, Y	Hariharan, K
Gopman, D	Gu, L	Harimkar, S52, 74, 89, 90
Gordiz, K	Gulhane, A72, 76	Harrington, M
Gorelik, M	Gulizia, S	Harris, R
Gorican, D	Gumucio, L	Harris, W
Gorman, B	Guo, Q	
Gorsse, S	Guo, R	Harrysson, O 13, 27, 40, 41, 49, 50,
Gorzkowski, E 17, 18, 31, 32, 43, 53,	Guo, X 19, 24, 36, 37, 65, 76, 86,	61, 77, 83, 85 Hart, R
60, 64, 71, 91, 92, 93, 97	94, 114, 115	
Gosvami, N	Gupta, A	Ha, S
	•	Hasan, A

Hasebe, Y	Hilla, C	Howard, J95, 107
Haseen, S	Hilmas, A	Hrabe, N
Haslam, J	Hilmas, G 21, 26, 40, 49, 61, 67, 82, 85	Hreniak, D
Hassan, R	Hilpert, B	Hsiao, H
Hattar, K 14, 28, 35, 42, 51, 86, 98	Hinkle, J	Hsuan, Y
Haugan, T	Hinks, J	Huang, C
Hautier, G	Hinnebusch, S	Huang, D83
Hawk, J	Hinojos, A	Huang, G
Hayat, M	Hinojosa Rivera, M	· ·
	•	Huang, H
Haycook, C	Hinrichs, F	Huang, J
Hayes, A	Hinterding, R96	Huang, K 44, 65, 68, 75, 110, 113
Hayes, R	Hintsala, E	Huang, L
Hayne, M	Hintze, P	Huang, T 61
Haynes, A	Hirales, A	Huang, X
Haynes, J	Hirao, K	Huang, Z
Hay, R90, 108	Hiroto, T	Hua, Z28, 108, 111
Heckman, E110	Hirst, C	Hu, C
Hector, L	Hitch, L	Huck, A
Heczko, M	Hjelmstad, M 41	Huddleston, W
Hedberg, Y	Hnylytsia, I	Hufnagel, T
Hegadekatte, V	Höche, D	Huh, T
Heilmaier, M	Hocker, S	Huin, D
Heim, F		Hu, J
	Hocquet, S	
He, K	Hoelzer, D	Hulbert, B
He, L	Hoffman, A	Hunt, C
Hemmer, E 19, 33, 44, 53, 65, 95, 96	Hoffman, E	Hunter, A
Hemrick, J 21, 36, 46, 56, 102, 103	Hoffman, R	Huo, Y
Henderson, H	Höfling, M	Hurley, D
Hendriksen, P96	Hogan, J	Huso, J
Henein, H	Hogan, M	Hussein, A94
Henriksen, E	Hohl, J94	Hussey, D112
Henry, A	Ho, J	Hu, X
Henry, T	Hojjatzadeh, S	Hu, Y
Heo, T	Holby, E	Huyan, H
Herath, C	Holdeman, C	Huynh, T
Herderick, E	Holm, E	Hwang, D
Hermans, M	Holwell, A 67	Hwang, J
Hermes, J	Holycross, C 67	Hwang, S
	•	=
Herren, B	Homa, J	Hwang, Y
Herrera, O	Homer, E	Hyde, R
Herriott, C	Hong, D	Hyer, H
Hershey, C81	Hong, L	Hyuga, H
Hershey, R	Hong, S	T
Hershock, C	Hopkinson, D	I
Herzberg, S	Hopkins, P	Ibrahim, H
Hesser, G	Horcher, A	Idhaiam, K
Heuser, B	Horonzy, M	
Higgins, M	Hosemann, P	Idris, A
Higgs III, C	Hossain, M	Ihlefeld, J
High, T	Hossain, T	Iijima, M
Hilgar, L	Houser, N	Ikeda, M
Hilhorst, A	Hou, X	Ikeda, Y 89
11mioist, A	110u, A	

Ikesue, A	Jayaganthan, R	Jung, Y
Ikhuoria, E	Jayan, B107, 108	87, 92, 97, 103
Ikuhara, Y	Jayaraman, T18, 33, 43, 59, 94	87, 92, 97, 103 Jun, J28, 87, 94
Ilic, I	Jayasekera, V	Juste, E
Iliukha, N	Jean, F	Jusu, S
		Jusu, 5
Iloeje, F	Jefferson, G	K
Imamiya, Y	Jena, K	K
Imhoff, S	Jennings, D	Kabel, J
Imholte, D	Jensen, J	Kabir, F
Ingalsbe, D	Jeong, S	Kacher, J 20, 35, 46, 72, 83, 101, 103
Ingraci Neto, R	Jeon, S	Kaczmarek, T
Inman, M24, 28, 31, 38, 90	Jesenovec, J	
Inoue, K	Jesús Elejabarrieta, M100	Kadirvel, K
Ionescu, E	Jiang, C	Kafka, O
Isasti, N	Jiang, J	Kagawa, Y
		Kagay, B
Ishii, A	Jiang, R	Kahraman, R
Islam, Z	Jiang, W	Kakar, A
Ito, M	Jian, W	Kakutani, T
Iwai, K	Jiao, Z100	Kalidindi, S
Iwamoto, Y	Ji, B	Kalinin, S
	Jimbo, S	Kalsar, R
J	Jimenez-melero, E	
711 1. 5	Jimenez, X	Kamitsos, E
Jablonski, P	Jin, M	Kanas, N 19, 33, 44, 53, 65, 95, 96
Jacek, S53	Jinschek, J	Kandasamy, K
Jackson, G		Kane, K
Jacob, J	Jin, Y	Kang, E97
Jacobs, L	Jitianu, A	Kang, J
Jacobs, R	Jitianu, M	Kang, S
Jacobs, T	John, R	Kannan, M 41
Jacques, P	Johnson, D	Kannan, R
Jagatramka, R	Johnson, J	Kantzos, C
	Johnson, K	Kaoumi, D
Jagdale, S	Johnson, L	
Jagetia, A	Johnson, M	Kaplan, W
Jahanmir, S	Johnson, N	Kappagantula, K24, 95
Jain, H	Johnson, S	Karaman, I
Jain, J112	Jokar, M	Karayagiz, K
Jakhar, P		Karki, D
Jalan, B	Jones, A	Karouiti, H
Jalan, V51	Jones, B	Karra, A
Jamalkhani Khameneh, M 62, 63	Jones, D	Kar, S
Jan, A	Jones, G	Kasay, P
Jana, S	Jones, J	Kasian, O
Janek, J	Jones, K	Kaspar, T
Janish, M	Jones, M96	Kasprzak, J
	Jones, N 61	
Janocha, S	Jonson, B	Kassem, M
Janowski, G	Jordache, M	Kate, K
Jansto, S	Jordan, B	Kathayat, P
Jared, B		Katiyar, P
Jarka, P100	Joshi, V	Katoh, Y31
Jarman, J	Jue, J	Kato, Y
Jarosinski, W	Juhasz, M	Kauffman, D
Jayachandran, J	Jung, K	Kaufman, J
,,		

Kaur, D	Kim, K	Koo, D
Kaur, M	Kimmel, D	Koos, E
Kautz, E	Kim, R	Kopp, D
Kawanaka, H 62	Kim, S	Koratkar, N 80
Kawano, S	Kim, T 63, 87	Kordijazi, A
Kawasaki, M 48	Kim, W	Korinko, P 80
Kaya, H	Kim, Y	Korkolis, Y
Kazantzis, N	Kindleyside, L	Kosson, M
Kean, C	Kindomba, E	Kot, M
Keesler-Evans, J	King, D	Koube, K
Keiser, D	Kingstedt, O	Kouraytem, N
Kelley, M	Kinsey, B	Kovacs, C
Kelly, J 82	Kirby, L	Kovalchuk, M
Kelly, L	Kirchner, K	Kovar, D
Kemp, J	Kirihara, S	Koyanagi, T
Kemp, R	Kirka, M	Kozasa, K
Kendrick, E	Kishore, R 80	Kozawa, T
Kenesei, P	Kitagaki, H	Koziel, T
Kenezevic, M	Kita, T	Koznel, T
Kenney-Benson, C	Klassen, C	Kraft, F
Kenney, D	Klassen, C	Krakor, E
•	•	Krause, A 19, 34, 53, 56, 67, 71, 103
Kenney, M	Kleebe, H	
Keppens, V 34 Keshishian, V 96	Klein, L	Kreller, C 86 Krenkel, W 109
	•	
Keto, J	Klemm-Toole, J 13, 32, 50, 57, 71,	Kriegsman, K
Keum, J	93, 94, 106	Krill III, C
Key, T	Klimczak, K	Krishnan, A
Khadka, S	Klochikhin, V	Krishnan, N 52, 64, 71, 80, 90, 91, 92, 99
Khafizov, M	Klochykhin, V	Kriven, W 21, 23, 36, 37, 47, 73, 108
Khalid, S	Kloenne, Z	Kroeger, B
Khanjar, S	Klomp, A	Krogstad, D
Khanolkar, A	Knaak, C84	Krogstad, J
Khan, S	Knight, K	Kroll, J
Khantachawana, A	Knight, M	Kroll, P
Khare, S	Knipling, K	Kroll, T
Khatri, O	Knowlton, W	Kruep, D
Khaykovich, B	Koc, R	Kruger, A
Khomenko, M	Kodamana, H	Kruglyak, D
Khurana, S	Kodumudi Venkataraman, L	Kruglyak, I
Khursanov, A	Koermann, F	Kruk, A
Kieffer, J	Koerner, H	Kruml, T
Kiener, D	Kohan, M96	Krzysztof, M
Kikuchi, M	Kohnert, A	Kshitjia, K
Kilaru, K	Kolanthai, E	Kuang, F
Kim, B	Kollarigowda, R 67	Kube, C
Kim, D 50, 58, 62, 81, 83, 85, 96,	Komarasamy, M	Kubena, I
97, 105, 113	Konda Gokuldoss, P 12, 26, 40, 49,	Kubicki, G
Kim, E	61, 62, 83	Kubo, K
Kimery, A	Kondo, A	Küçüktürk, G
Kim, G	Kondrashova, S74	Kuenneth, C
Kim, H	Kong, J	Kuhr, S
Kim, J14, 75, 81, 87, 92, 96	Kong, Y57	Kulabneva, E71, 73

Des IIIII I Produ

Kulesza, D	Larson, N	Li, A
Kulkarni, A	Lasgorceix, M	Liang, J
Kulkarni, S	Laskoski, M	Liang, Q
Kulkarni, Y	Laskowksi, E	
		Liang, X
Kultayeva, S98	Lass, E22, 72, 107	Liang, Y
Kumar, A	Laszlo, P	Lian, J
Kumar Arora, U	Latypov, M	Liao, Y 59
Kumar, D	Lau, M	Liaqat, U
Kumar, G	Lauridsen, E	Liaw, P 20, 34, 45, 54, 55, 62, 65, 66,
Kumari, J	Laurin, F	99, 111
		Li, B
Kumar, M	Lauth, M	
Kumar, N	Lawrence, A	Li, C35, 53, 79
Kumar, P	Lawrence, S	Li, D
Kumar, R	Lawson, R	Liebscher, C
Kumar, S	Lazarus, E	Liew, L
Kumar, U	Lear, C	Li, F
Kumar, V	LeBeau, J	Li, G
Kunc, V	Lebensohn, R	Ligda, J
		•
Kundu, A	LeBlanc, S	Li, J 19, 25, 39, 42, 43, 47, 51, 60, 100
Kundu, R	Lech, S	Li, K
Kundu, T	Ledford, C	Li, L
Kung, F	Ledford, J	Lilova, K24, 37, 76, 114, 115
Kupec, R	Lee, C	Li, M
Kürnsteiner, P	Lee, D	Lim, J
Kurtz, M	Lee, H	Lim, K
Kushwaha, A	Lee, J	Lim, R
Kusiak, J	Lee, K	Lim, Y
Kuzyk, A	Lee, M	Li, N
•		
Kwark, Y	Lee, S 19, 33, 44, 53, 65, 82, 95, 96	Lin, C
Kwon, S	Lee, W	Lindahl, J
т	Lee, Y50, 62, 85	Lindsay, L
L	Lefeuvre, P	Lindwall, G 12, 26, 41, 84
LaDelpha, A 50	Le, H24, 38	Lin, F
Lai, A	Leinenbach, C	Lin, H44, 97
	Leng, W	Lin, J
Lai, J	Leonard, B	Lin, K
Lakshmanan, A	Leonard, D	Linke, O
Lakusta, M	Leonard, R	Link, G
Lam, B	Leonen, E	
Lambert, P	-	Lin, Y
Lamb, K	Leong, A	Li, P
Lamm, B82, 103	Le, P	Lipke, D
Lamon, J	Leriche, A	Li, Q
Lamprinakos, N 61	Leshchynsky, V	Lish, S
•	Lesko, C51	Lis, S
Lam, S	Leu, B	List, F
Lance, M	Leu, M	Littrell, K
Landinez Borda, E	Levi, C	Liu, B
Lane, B	Levine, L	Liu, C
Lang, C12, 26, 41, 84	Levin, I	Liu, D
Lang, E		
Lange, A	Lewandowski, J 12, 14, 15, 31, 40, 51	Liu, H
Lang, M	Lewis-Fell, J	Liu, I
Lanka, S	Lewis, J	Liu, J

Liu, L	Maddalena, R	Marquardt, K 45
Liu, W	Madden, N	Marquez Rossy, A
Liu, X 20, 21, 24, 34, 35, 37, 45, 54,	Madej, L	Marquis, E
55, 65, 66, 76, 99, 114, 115	Maev, R	Marsh, M
Liu, Y	Ma, H	Martin, A
Liu, Z	Mahajan, R	Martinez, A
Li, W	Mahajan, S	Martinez, C
Li, X	Mah, C	Martinez, D
Li, Y	Mahmood, M 80	Martin, H
Li, Z	Mahmoud, M	Martin, I
Locke, J	Maier, R	Martin, K
Locq, D	Maire, J	Martin, S
Loli, J 50	Makarenko, K	Martin, U
Lombardi, A	Makineni, S	
		Martys, N
Long, M	Makovskyi, S	Marya, M
Lopez, J	Makurunje, P	Ma, S
López, J	Ma, L	Mascotto, S
López-Martínez, E	Malakkal, L	Masi, L
Lopez Morales, A	Malek, E	Mason, J
Lou, J	Malik, H95, 106	Masseling, L
Loureiro Muller Costa, I	Malik, R	Massey, C
Lou, X	Malik, S	Massie, J
Love, L	Malinovskiy, P	Massonnet, M
Lovi, J	Mallick, D	Ma, T
Lowry, D	Mamros, E	Mathaudhu, S
Lubosch, D 50	Manavbasi, A	Mathur, S32, 43, 53, 64, 71, 87, 92,
Lucchini, G	Mandal, K	93, 106, 107
Lugo, M	Manga, V	Matiukhin, A
Lu, K24, 32, 43, 53, 64, 71, 79, 86,	Mangolini, L	Matkovska, M
Lu, K24, 32, 43, 53, 64, 71, 79, 86, 92, 93, 109, 110	Mangolini, L	Matkovska, M 27 Matsubara, A 95
Lu, K24, 32, 43, 53, 64, 71, 79, 86, 92, 93, 109, 110 Lu, N	Mangolini, L	Matkovska, M
Lu, K 24, 32, 43, 53, 64, 71, 79, 86, 92, 93, 109, 110 Lu, N	Mangolini, L	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109
Lu, K	Mangolini, L	Matkovska, M 27 Matsubara, A 95 Matsunaga, K .95, 98, 111 Matsushita, S .62 Matsushita, T .113 Mattar, T .94, 109 Matthews, M .13, 51, 84
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113
Lu, K	Mangolini, L	Matkovska, M 27 Matsubara, A 95 Matsunaga, K .95, 98, 111 Matsushita, S .62 Matsushita, T .113 Mattar, T .94, 109 Matthews, M .13, 51, 84
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37 Margem, F 44	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65 Mayeur, J 11
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37 Margem, F 44 Marianetti, C 28	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65 Mayeur, J 11 Mazanova, V 45
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37 Margem, F 44 Marianetti, C 28 Marian, J 110 Mariaux, A 16 Marin, C 112	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65 Mayeur, J 11 Mazanova, V 45 Mazánová, V 45
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37 Margem, F 44 Marianetti, C 28 Marian, J 110 Mariaux, A 16	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65 Mayeur, J 11 Mazanova, V 45 Mazánová, V 45 M. Bastidas, D 54
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37 Margem, F 44 Marianetti, C 28 Marian, J 110 Mariaux, A 16 Marin, C 112	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65 Mayeur, J 11 Mazanova, V 45 Mazánová, V 45 M. Bastidas, D 54 McCabe, B 50
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37 Margem, F 44 Marianetti, C 28 Marian, J 110 Mariaux, A 16 Marin, C 112 Marino, G 63	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65 Mayeur, J 11 Mazanova, V 45 M. Bastidas, D 54 McCabe, B 50 McCabe, R 36
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37 Margem, F 44 Marianetti, C 28 Marian, J 110 Mariaux, A 16 Marin, C 112 Marino, G 63 Markley, B 27	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65 Mayeur, J 11 Mazanova, V 45 M. Bastidas, D 54 McCabe, B 50 McCabe, R 36 McCall, S 85
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37 Margem, F 44 Marianetti, C 28 Marian, J 110 Mariaux, A 16 Marin, C 112 Marino, G 63 Markley, B 27 Markovic, B 88	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65 Mayeur, J 11 Mazanova, V 45 M. Bastidas, D 54 McCabe, B 50 McCabe, R 36 McCall, S 85 McCarty, R 10, 38
Lu, K	Mangolini, L 56 Manjooran, N 22, 29, 42, 52, 63, 74, 87, 105 Mannebach, L 110 Mannodi Kanakkithodi, A 16 Mann, T 22, 37 Mantri, S 27, 51, 59, 66 Manuguri, S 107 Manzoor, A 55, 110 Mao, C 47, 75, 108 Mao, K 111 Mara, N 20, 101 Marconie, T 11, 37 Margem, F 44 Marianetti, C 28 Marian, J 110 Mariaux, A 16 Marin, C 112 Marino, G 63 Markley, B 27 Markovic, B 88 Markov, M 10	Matkovska, M 27 Matsubara, A 95 Matsunaga, K 95, 98, 111 Matsushita, S 62 Matsushita, T 113 Mattar, T 94, 109 Matthews, M 13, 51, 84 Matykina, E 113 Matysiak, W 100 Mavani, K 72 Ma, X 24 Max, B 102 Mayanovic, R 65 Mayeur, J 11 Mazanova, V 45 M. Bastidas, D 54 McCabe, B 50 McCabe, R 36 McCall, S 85 McCarty, R 10, 38 McCloy, J 70, 72, 114

Mccormack, S 23, 36, 37, 47, 73, 108	Miao, Z	Mohanta, K
McCue, I	Michaelis, A	Mohanty, C
McDermid, J	Michi, R	Mohanty, S
Mcdonald, J	Michopoulos, J 62	Mohapatra, L
McDowell, D	Middendorf, J	Mohee, L
McEwen, J	Middleburgh, S	Mohrbacher, H
McFarland, B	Middlemas, S	Mokhnach, R
McGilvry-James, T	Miele, P	Moldenhauer, J
McGowan, K	Migdisov, A	Molina, A
McGrann, M	Migdissov, A	Molina-Aldareguia, J
McHenry, M	Mihailescu, I	Molnar, K
McKeown, J	Milan, E	Möncke, D
McKone, J	Miles, M	Mondol, S
McLeod, M	Milisavljevic, I	Montemor, M
McMahon, M	Militzer, M54, 57, 98, 106	Montero, X
McMullen, D	Miller, C	Montiel, D
McMurray, J	Miller, M	Montoya, J
McMurtrey, M	Mills, M	Montoya, K
McNamara, C	Milonin, E	Moodispaw, M11
McNees, N	Ming, H	Mooraj, S
Mc Williams, B 51	Ming, K	Moore, E
McWilliams, B 11, 25, 39, 40, 76, 80,	Min, K	Moorehead, M34, 111
81, 85	Minnert, C	Moore, J94
Mecartney, M	Minor, A	Moran, A
Mecklenborg, M 10	Miracle, D	Mora Sanchez, H113
Medina, H	Miramontes, E 50	More, K
Medishetty, K	Miranda, H	Moretti, E
Meena, N	Mishchenko, V	Morgan, D33, 64, 71, 110
Megahed, M	Mishin, Y	Moridi, A
Mehan, J	Mishra, B	Mori, M
Mehta, A	Mishra, D	Morimitsu, M
Meier, D	Mishra, K	Mori, T
Meiners, T	Mishra, R20, 24, 38, 81, 101	Morkisz, P
Mejia, A	Misra, A	Morris, A
Melville, M	Misra, M	Morris, J
Mena Garcia, J	Misture, S	Morrison, G
Mena, J	Mitchell, D	Morrow, B
Mendez-González, Y	Mitchell, R 90	Morscher, G
Mendoza-Garcia, J	Mitic, V	Mortensen, A
Mendoza Jimenez, E 40	Mitra, M	Moser, N
Menezes, P	Mittal, M	Moshtaghioun, M
Mengis, L	Miyagi, L	Moskalewicz, T
Meng, J	Miyamoto, G	Mostafaei, A
Merrow, H 50	Miyazaki, H	Motley, N
Mertsoy, E	Mo, B	Motta, A
Mesbah, A		
Messner, M	Mock, C	Moucho P
•	Mofrad, A	Mouche, P
Meyers, J	Moghimi, L	Moyers, A
Mezghani, A	Mogilevsky, P	Mrovec, M
Miagava, J	Mohamed, M	Mudra, S
Miao, C	Mohamed, T	Mueller, B
Miao, Y	Mohammadi, M 62	Muhammad, Q

Mujib, S	Natividad, Y	Nygren, K
Mukhopadhyay, N	Naumenko, D	O
Mukhopadhyay, S	Naumyk, V	
Mulchandani, K	Navrotsky, A 24, 37, 67, 76, 114, 115	Oane, M
Muller, K	Nawaz, M	Obayemi, J
Müller, M	Nayak, C	Oberhumer, P
Mullin, M	Nayak, S	Oddershede, J
Mullurkara, S	Nayir, S	Ode, M
Mummareddy, B	Nazari, B	O'Donnell, K
Mumm, D	Ndayishimiye, A	Odusanya, O
Munroe, N	Neal, C	Oechsner, M
Muntaha, M	Neffati, D	Ogoke, F
Muraleedharan, M	Nelaturu, P	Ohji, T 10, 24, 38, 73, 79, 102, 103
Muralidharan, G	Nelson, K	Ohodnicki, P23, 47, 53, 98
Muralidharan, K	Nelson, T	Oh, S27
Muralikrishnan, V	Nemani, S	Ohsaki, S
Murphy, H	N. Esmaeely, S	Oikawa, I
Murugesan, J	Nettleship, I	Ojo, S
Mushongera, L	Nevarez-Saenz, D 82 Newell, P 72	Okafor, C
Musinski, W	Ngo, A	Oladayo, F
Musu Jusu, S	Nguyen, A	Oliver, A
Muszka, K	Nguyen, C	Olivera C., A
Myers, J	Nguyen, D	Oliver-Reynoso, A
,, ,	Nguyen, P	Olivetti, E
N	Nguyen, T 83	Olleak, A
Nagaraju, M71	Nguyen, V	Olshanetskii, V
Nagesha, B	Nicholls, A	Olson, H
Naguib, M 32, 43, 53, 64, 71, 92, 93	Niebuhr, J	Olszta, M
Naito, M	Nielsen, R	Oluwagbenga, O
Nakada, H	Nienhaus, A	O'Masta, M
Nakajima, Y113	Niezgoda, M	Ombogo, J
Nakamura, A95, 98, 99, 111	Nighojkar, A	Onaifo, J
Nakano, H	Niihara, K	Opila, E11, 17, 31, 37, 76
Nakatani, S	Nikpour, S	Oppenheimer, S
Nakayama, T56, 79, 100, 106	Niig, K	Oprocha, P
Nakonechna, O	Nisbet, H	O'Quinn, E
Naleway, S	Nittala, A	Oreshkin, O
Nambu, S	Niu, T	Orta Guerra, R
Nam, C	Niverty, S	Ortega Rojas, J
Nandwana, P 13, 27, 41, 50, 62, 77, 85	Noakes, M	Osantowski, A
Naraparaju, R	Noel, J	Osetskiy, Y
Narayan, R 22, 47, 57, 75, 104, 106, 107	Nolens, G	Osetsky, Y
Naraynan, B	Noor E Sumaiya, S	Osgood, R
Narra, S	Nordlund, K	Oshima, Y
Nartu, M	Norkhodjaev, F	Osma, S
Nassar, A	Norton, M	Oti, A
Nastasi, M21, 54, 103	Nsah, A	Otonicar, M
Natarajan, A100	Nwazojie, C	Ouyang, G99
Nataraj, C46, 55, 66	Nycz, A50, 62	Ouyang, L

Oyaenga, T. 95 Patel, S. 25 Pietryk, M. 105 Overman, N. 24 Patel, T. 72 Pike, I. 200 Owass Mensah, M. 58 Patra, A. 102, 105 Pilania, G. 52 Oyehanji, J. 25 Patreson, E. 31, 88 Piltak, A. 5, 66 Oztürk, B. 113 Paudel, B. 25 Pilt, B. 17, 13, 64, 82 Paul, S. 25 Pilt, B. 17, 13, 64, 82 Paul, T. 6, 66 Pischlar, J. 59 Palai, G. 50 Paul, T. 6, 66 Pischlar, J. 59 Pachauri, A. 75 Parusai, J. 14, 27, 61, 76, 84 Pisterius, P. 21, 39 Pachauri, A. 100 Parusak, R. 100 Parus, S. 60 Piltik, T. 80 Patrik, A. 100 Parus, S. 60 Piltik, T. 80 Patrik, A. 100 Parus, S. 60 Piltik, T. 80 Patrik, A. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, R. 100 Parus, S. 60 Pisthahang, M. 19 Patrik, S. 100 Parus, S. 60 Pisthahang, M. 100 Parus, S. 60 Patrik, S. 10 Parus, S. 10	O T	D-4-1 C 25	Distanta M
Owtsu-Mensah, M. 5.8 Patra, A. 102,105 Pilania, G. 52 Oycbanji, J. 25 Patreson, E. 3.3, 98 Pilchak, A. 5.6 Oztürk, B. 113 Paulel, B. 25 Pilla, R. 5.2, 64, 74, 92 Paul, T. 66 Pilla, R. 52, 64, 74, 92 Paul, T. 66 Pilla, R. 52, 64, 74, 92 Paul, T. 66 Pilla, R. 52, 64, 74, 92 Paul, T. 66 Pilla, R. 52, 64, 74, 92 Paul, T. 66 Pilla, R. 52, 64, 74, 92 Paul, T. 66 Pilla, R. 52, 64, 74, 92 Paul, T. 66 Pilla, R. 52, 64, 74, 92 Paul, T. 66 Pilla, R. 52, 64, 74, 92 Pachauri, A. 75 Pachauri, A. 75 Pachauri, A. 75 Pachauri, A. 75 Pachauri, Y. 1111 Pachuta, K. 100 Paul, M. 100 Paul, M. 100 Paul, M. 100 Payron, F. 100 Pilla, M. 14, 63 Payro, F. 100 Pilla, A. 93 Palladugu, M. 77 Paylon, J. 14 Pillankett, A. 93 Palladugu, M. 77 Payron, J. 14 Pillankett, A. 93 Pallarer, B. 115 Pauler, A. 30, 61, 95 Polor, R. 1114, 115 Pauler, B. 115 Pauler, A. 30, 61, 95 Polor, R. 114, 115 Pauler, B. 115 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, B. 115 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Polok, R. 114, 115 Pauler, A. 30, 61, 95 Pauler, A. 3			•
Oyebanji, J. 25 Patterson, E. 31, 98 Plichak, A. 5.6 6.74, 49, 92 P Paul, S. 25 Pinit, B. 1.73, 16, 48, 28 Pabis, G. 50 Paul, T. 66 Pischlar, J. 59 Pachauri, A. 75 Paulonyic, V. 88 Pishahang, M. 1.19 Pachauri, A. 75 Pauxa, J. 1.4, 27, 61, 76, 84 Pistorius, P. 27, 39 Pachaury, Y. 111 Pavar, M. 35 Pittic, T. 80 Pachuta, K. 100 Pavar, M. 35 Pittic, T. 80 Paladugu, M. 77 Payton, E. 60 Pipapally, A. 9.7 Paliwal, M. 14, 63 Payton, J. 14 Plunkett, A. 9.3 Palmer, B. 15 Pax Soldan Palma, J. 115 Poerschke, D. 17, 64 Palmer, T. 102 Par, Par, Par, A. 30, 61 Poerschke, D. 17, 64 Pander, S. 5, 80 Poersche, D. 17, 64 Poerschke, D.<			
Oztūrk, B 113 Paual, B 25 Pillat, B 52, 64, 74, 92 Pabis, G 50 Paunovic, V 66 Pischlar, J 59 Pachauri, A 75 Paunovic, V 88 Pishahang, M 19 Pachaury, Y 111 Pawar, M 36 Pittie, T 80 Pachuta, K 100 Pavalak, E 27 Pisner, F 113 Pach, R 109 Payron, E 100 Plotkowski, A 80 Pal, N 105 Payron, E 100 Plotkowski, A 83 Palladugu, M 77 Payton, I 14 Plunkert, A 93 Palmer, B 15 Payron, B 25 Podor, R 114115 Palmer, T 100 Plotkowski, A 83 Palmer, B 15 Payron, B 22 Permit, B 15 Payron, B 92 Permit, B 12 Podor, R 114115 Poreschke, D 17, 66 Palmer, B 15 Payron, B			
Perint Babis, G Paul, T 66 Pint, B 17, 31, 64, 82 Pabis, G 50 Paunovic, V 88 Pishahang, M 19 Pachauri, A 75 Pauza, J 14, 27, 61, 76, 84 Pistorius, P 27, 39 Pachaury, Y 1111 Pawar, M 36 Pittie, T 80 Pachaury, Y 1101 Pawar, M 36 Pittie, T 80 Pachuta, K 100 Pavit, B 6 Pilappally, A 97 Pal, N 105 Payre, S 6 60 Pilappally, A 97 Paladug, M 76 Payton, I 14 Pilnkett, A 93 Palwar, S 101 Payton, I 14 Pilnkett, A 93 Palwar, S 101 Payton, I 14 Pilnkett, A 93 Palwar, S 101 Payron, I 14 Pilnkett, A 93 Palwar, T 102 Payron, I 14 Pilnkett, A 90 Palwar, T 103			
Pabis, G	Oztürk, B113		
Pabis, G	D		Pint, B
Pachauri, A	P		Pischlar, J
Pachauri, A 75 Pauza, I 14, 27, 61, 6, 84 Pistorius, P. 27, 39 Pachaury, Y 111 Pawar, M 36 Pittie, T. 80 Pachuta, K. 1009 Pawalk, E. 27 Pixner, F. 113 Paliva, R. 1005 Payron, J. 114 Plotkowski, A. 83 Palludy, M. 14, 63 Papton, J. 114 Plotkowski, A. 83 Palmer, B. 15 Pazol, B. 25 Podor, R. 114, 115 Posschke, D. 17, 66 Palmer, T. 102 Pearmain, D. 112 Perschke, D. 17, 66 Posschke, D. 17, 66 Pand, S. 112 Pearmain, D. 112 Perschke, D. 17, 66 Posschke, D. 17, 64 Parmatham, D. Polak, J. 45 Polak, J. 45 Pand, S. 112 Pearmain, D. 112 Pearmain, D. Polak, J. 45 Polak, J. 45 Pandey, S. 47, 94 Pellegrino, T. 73 Pollokowski, S.	Pahis G 50	Paunovic, V	Pishahang, M
Pachautay, Y. 111 Pawar, M. 36 Pittie, T. 80 Pachuta, K. 100 Pawlak, E. 27 Pixner, F. 113 Pack, R. 109 Payne, S. 60 Plappally, A. 97 Palok, N. 105 Payron, J. 14 Plunkert, A. 93 Palawal, M. 14,63 Paz Soldan Palma, J. 115 Poodor, R. 114,115 Palmer, T. 102 Paz Soldan Palma, J. 115 Poodor, R. 114,115 Palmer, T. 102 Paz y Puente, A. 30,61,95 Pokharel, A. 102 Panat, R. 57,80,106 Pegg, L. 59 Polák, J. 45 Panda, S. 112 Pegues, J. 51 Polák, J. 45 Pandey, N. 47,94 Pegues, J. 51 Poláka, J. 45 Pan, J. 80 Park, T. 37 Polock, T. 38,56 Pan, J. 80 Peng, F. 21,39 Pomerantseva, E. 70,96		Pauza, J14, 27, 61, 76, 84	Pistorius, P
Pachuta, K 100 Pawika, E. 27 Pixner, F. 115 Pack, R 109 Payne, S. 60 Plappally, A. 97 Pai, N 105 Payton, E. 100 Plothkovski, A. 8.3 Paladugu, M 77 Payton, I. 14 Plumett, A. 9.3 Paliwal, M 14.63 Pazo y Puche, A. 30.61, 95 Podor, R. 114, 115 Palmer, B 1.5 Paz Soldan Palma, J. 115 Poerschke, D. 17, 66 Palmer, T 102 Paz Soldan Palma, J. 115 Poerschke, D. 17, 66 Palmer, T 102 Pearmain, D. 112 Polak, J. 4. 4. Pand, J. 8.0 Pearmain, D. 112 Polak, J. 4. 4. Pand, S. 112 Pegna, J. 1. Polak, J. 4. 4. Pandey, O. 73 Pellegrino, V. 70 Pollock, T. 3. 5. 6. Pan, J. 80 Penn, J.		Pawar, M	Pittie, T
Pack, R. 109 Pai, N 105 Pai, N 105 Payton, E 100 Payton, I 144 Plunkert, A 193 Palluval, M 14,63 Paz Soldan Palma, J 115 Poerschke, D 1, 17,66 Pokharel, A 102 Pallure, T 102 Paz y Puente, A 30,61,95 Pokharel, A 102 Panat, R 57,80,106 Paga, I 59 Panda, S 112 Pandey, O 73 Pages, J 59 Pandey, R 113 Paker, T 37 Pallure, T 37 Pandey, V 47,94 Pellegrino, V 70 Pallonsky, A 56 Pann, W 47,94 Pansegrau, C 72 Peng, J 64,103 Pan, Y 73 Pan, N 74 Park, N 75 Parkin, C 117 Park, N 75 Park	•		
Pai, N. 105 Payton, F. 100 Plotkowski, A. 83 Paladugu, M. 77 Payton, J. 14 Plunkett, A. 9.3 Palukal, M. 14, 63 Payton, J. 14 Plunkett, A. 9.3 Parol, B. 25 Podor, R. 114, 115 Palmer, B. 15 Paz y Puente, A. 30, 61, 95 Pokharel, A. 102 Palmer, T. 102 Palmer, T. 102 Palmer, T. 102 Palmer, T. 102 Paramain, D. 112 Polak, J. 45 Panat, R. 57, 80, 106 Pagg, I. 59 Polák, J. 45 Panat, R. 57, 80, 106 Pagg, I. 59 Polák, J. 45 Panat, R. 57, 80, 106 Pagg, I. 59 Polák, J. 45 Panate, R. 113 Pekin, T. 37 Pollock, T. 38, 56 Pan, J. 80 Paney, V. 47, 94 Pellegrino, V. 70 Pollonghin, S. 28, 26 Pan, J. 80 Paney, D. 84 Peng, F. 21, 39 Pomerantseva, E. 70, 96 Pansegrau, C. 72 Peng, J. 64, 103 Poole, W. 106 Pan, J. 80 Pan, V. 73 Penney, J. 50 Popescu, A. 80 Pan, V. 73 Penney, J. 50 Popescu, Pelin, G. 80 Pan, Y. 109 Paramere, J. 47, 109 Paramore, J. 47, 109 Paramo			
Paladugu, M 77 Paliwal, M 14, 63 Pazol, B 25 Podor, R 114, 115 Palmer, B 15 Paz Soldan Palmar, J 115 Poerschke, D 17, 66 Palmer, T 1002 Pal, U 53 Paz Soldan Palma, J 1115 Poerschke, D 17, 66 Palmer, T 1002 Pal, U 53 Pergs, I 59 Polák, J 45 Panat, R 57, 80, 106 Pegg, I 59 Polasik, A 18, 32, 93 Pendey, O 73 Pegg, I 59 Polasik, A 18, 32, 93 Pendey, O 73 Pekin, T 37 Pollock, T 38, 56 Pandey, V 47, 94 Pan, J 80 Pan, V 47, 94 Pan, J 80 Peng, F 21, 39 Polasik, A 59 Pan, V 73 Penney, J 50 Peng, Z 23, 112 Peng, J 50 Popescu, A 80 Pan, X 36 Pan, Y 109 Perce, J 50 Perce, L 50 Popescu, A 80 Pan, Y 109 Parathaman, M 96 Perce, B 88 Popov, D 114 Parab, N 61, 84 Perce, Torres, A 37, 47 Porter, K 25, 49, 58 Paramore, J 47, 109 Paraskevopoulou, P 75 Paredis, C 39 Parent, L 95 Paredis, C 39 Parent, L 95 Paredis, C 39 Parent, L 95 Parent, C 17, 64 Park, R 139, 76, 81, 97 Park, R 139, 76, 81, 97 Park, C 17, 69 Park, G 22 Parks, R 86 Parm, C 111 Park, S 62, 83, 85 Parr, Z 100 Parks, R 86 Parr, Z 100 Parks, R 113 Parrish, R 86 Parr, Z 100 Parks, G 100 Prime, M 144, 150 Parce, B 100 Parks, G 100 Parks, G 100 Parish, R 113 Parksh, R 86 Parr, Z 100 Parks, G 100 Parksh, S		•	
Paliwal, M. 14, 63 Paliwar, B. 15 Palmer, B. 15 Palmer, T. 102 Pay Puente, A. 30, 61, 95 Pokharel, A. 102 Paramin, D. 112 Polak, J. 45 Panda, S. 780, 106 Pagg, J. 59 Polasik, A. 18, 32, 93 Pandey, O. 73 Pandey, R. 113 Pandey, R. 113 Pandey, V. 47, 94 Pan, J. 80 Pan, J. 80 Pan, J. 80 Pan, J. 90 Pan, W. 73 Pan, W. 73 Pan, W. 73 Pan, W. 73 Pan, Y. 109 Pan, W. 73 Pan, Y. 109 Pan, W. 73 Pan, Y. 109 Pan, W. 73 Parkin, T. 31, 30, 83 Parab, N. 61, 84 Paramore, J. 47, 109 Paraskevopoulou, P. 75 Paraskin, G. 39 Park, H. 39, 76, 81, 97 Park, G. 176, 75, 93, 105, 111 Park, S. 62, 83, 85 Park, G. 113 Partsh, R. 86 Parr, Z. 100 Part, P. 100 Part, P. 113 Parkin, G. 111 Park, S. 62, 83, 85 Parr, Z. 100 Part, P. 113 Parrish, R. 86 Parr, Z. 100 Part, P. 114 Parrish, R. 86 Parr, Z. 100 Part, P. 114 Parrish, R. 86 Parr, Z. 100 Part, P. 1113 Parville, G. 20 Partin, P. 1114 Parrish, R. 86 Parr, Z. 100 Partin, P. 113 Parrish, R. 86 Parr, Z. 100 Partin, P. 113 Parville, G. 20 Partin, P. 114 Parrish, R. 86 Parry, S. 100 Partining, O. 100 Partining		·	
Palmer, B.		·	
Palmer, T. 102 Pal, U 53 Pant, R 57,80, 106 Pant, R 57,80, 106 Panday, S 112 Pandey, O 73 Pandey, C 47,94 Pan, J 80 Panot, N 61,84 Pansegrau, C 72 Pan, W 73 Pan, W 73 Pan, X 36 Parab, N 661,84 Paramore, J 47, 109 Parathaman, M 96 Paraskevopoulou, P 75 Paredis, C 39 Paredis, C 31 Pare			
Pall, U			
Panda, S. 112 Pegna, J. 17 Polasik, J. 45 Pegnada, S. 112 Pegna, J. 17 Polasik, A. 18,32,93 Pandey, O. 73 Pegnadey, R. 113 Pekin, T. 37 Pollock, T. 38, 56 Pekin, T. 37 Pollock, T. 38, 56 Pekin, T. 37 Pollock, T. 38, 56 Pelicyrino, V. 70 Pollonghini, S. 23 Pollonsky, A. 56 Peng, F. 21, 39 Polonexaltseva, E. 70, 96 Peng, F. 21, 39 Polonexida, V. 56 Policyrino, V. 50 Policyrino, S. 20, 100 Peng, F. 21, 39 Polonexida, A. 56 Policyrino, A. 80 Peng, F. 21, 39 Polonexida, A. 80 Po			
Panda, S. 112 Pandey, O. 73 Pandey, R. 113 Pandey, R. 113 Pandey, V. 47, 94 Pandey, V. 70 Pollonghini, S. 23 Pallin, M. 31 Polonsky, A. 56 Peng, F. 21, 39 Pomerantseva, E. 70, 96 Pang, J. 64, 103 Peng, J. 64, 103 Peng, J. 96, 99 Pandey, V. 103, 30, 83 Pandey, V. 47, 109 Pandey, V. 70 Pollonghini, S. 23 Pallin, M. 31 Polonsky, A. 56 Peng, F. 21, 39 Pomerantseva, E. 70, 96 Peng, J. 96, 41, 103 Peng, J. 96, 99 Penney, J. 50 Popescu, A. 80 Penning, O. 50 Popescu, A. 80 Penning, O. 50 Popescu, A. 80 Penning, O. 50 Popescu, A. 80 Penney, J. 50 Popescu, A. 80 Pentzer, E. 100 Poplawsky, J. 20, 58, 59, 62, 83, 111 Perezako, J. 87, 99 Popovich, V. 85 Parendey, V. 103, 30, 83 Perezako, J. 87, 99 Popovich, V. 85 Parendey, V. 103, 30, 81 Perezako, J. 87, 99 Pertier, K. 25, 49, 58 Pertin, F. 102 Perusin, S. 102 Powell, A. 16, 53 Pertin, P. 102 Perusin, S. 102 Powell, A. 16, 53 Pertin, P. 102 Prabhu, R. 103 Park, G. 17, 64 Pefferkorn, F. 13 Prabhu, N. 102 Perid, F. 102 Prabhu, N. 102 Perid, F. 102 Prabhu, N. 102 Prichard, P. 104 Phillips, N. 51, 100 Prime, M. 14 Phillips, S. 87 Priming, S. 22, 72, 93, 107 Phillips, N. 55, 500 Primius, C. 106 Primius,			
Pandey, O. 73 Pandey, R. 113 Pegues, J. 51 Polkowski, S. 24 Pandey, R. 113 Pandey, V. 47, 94 Pellegrino, V. 70 Pollonghini, S. 23 Pandey, V. 70 Pollonghini, S. 23 Pollock, T. 38, 56 Pellin, M. 31 Polonsky, A. 56 Peng, J. 64, 103 Poole, W. 106 Poole,	Panat, R57, 80, 106		
Pandey, N. 133 Pandey, V. 47, 94 Pan, J. 80 Panov, D. 84 Pansegrau, C. 72 Pant, P. 30 Pan, X. 36 Pan, X. 36 Pany, Y. 109 Paquit, V. 13, 30, 83 Parab, N. 61, 84 Paramore, J. 47, 109 Paranthaman, M. 96 Paraskevopoulou, P. 75 Paredis, G. 39 Parent, L. 95 Parert, L. 95 Parerk, C. 176 Park, R. 39, 76, 81, 97 Parkin, C. 111 Park, J. 19, 67, 75, 93, 105, 111 Park, S. 62, 83, 85 Parr, Z. 100 Parrulescu, M. 109 Pallegrino, V. 70 Pollonghini, S. 23 Pollock, T. 38, 56 Pollonghini, S. 23 Pollonghini, S. 23 Pollonghini, S. 23 Pollonghini, S. 23 Pollock, T. 38, 56 Pollonghini, S. 23 Pollonghini, S. 25 Pollonghini, S. 23 Pollonghini, Delonghitical Polons, Methods plones, Methods plo	Panda, S112	•	
Pandey, R. 113 Pekin, 1 39 Pollock, 1 38, 505 Pandey, V 47, 94 Pellegrino, V 70 Pollonghini, S 23 Pandov, D. 84 Pansegrau, C 72 Pant, P 30 Pan, W 73 Pan, W 73 Pan, W 73 Pan, W 109 Penney, J. 50 Popescu, A 80 Penney, J. 50 Popescu, Penning, O 50 Popescu, Penning, O 50 Popescu, Penney, J. 50 Popescu, A 80 Popescu, A 80 Penney, J. 50 Popes	Pandey, O	•	
Pandey, V. 47, 94 Pellegrino, V. 70 Polionghini, S. 2.5 Pan, J. 80 Pellin, M. 31 Polionghini, S. 2.5 Panow, D. 84 Peng, F. 21, 39 Pomerantseva, E. 70, 96 Pansgrau, C. 72 Peng, J. 64, 103 Poon, J. 96, 99 Pant, P. 30 Peng, Z. 23, 112 Poon, J. 96, 99 Pan, X. 36 Penning, O. 50 Popescu, A. 80 Pan, Y. 109 Perney, J. 50 Popescu, Pelin, G. 80 Pan, Y. 109 Perney, J. 50 Popescu, Pelin, G. 80 Pant, Y. 109 Perney, J. 50 Popescu, Pelin, G. 80 Pant, Y. 109 Perceda, B. 88 Popov, D. 114 Parably, N. 61, 84 Perpez-Mor, J. 87, 99 Popovich, V. 85 Parashevopoulou, P. 75 Perron, A. 13, 84, 85 Porz, L. 98, 99 Parest, S. 50 Petrit, F. 102 Probhu, E. <t< td=""><td></td><td></td><td></td></t<>			
Pan, J			
Panov, D. 84 Peng, F. 21, 39 Pomerantseva, E. 70, 96 Pansegrau, C. 72 Peng, J. 64, 103 Poole, W. 106 Pant, P. 30 Peng, Z. 23, 112 Poon, J. 96, 99 Pan, W. 73 Penney, J. 50 Popescu, A. 80 Pan, Y. 109 Pentzer, E. 100 Poplawsky, J. 20, 58, 59, 62, 83, 111 Parab, N. 61, 84 Pereda, B. 88 Popovich, V. 85 Paramore, J. 47, 109 Perrez-Torres, A. 37, 47 Porter, K. 25, 49, 58 Pare dis, C. 39 Perron, A. 13, 84, 85 Porz, L. 98, 99 Parent, L. 95 Pertish, S. 102 Powell, A. 16, 53 Parey, A. 59 Petrella, A. 13 Prabhu, E. 35 Parker, C. 17, 64 Petrella, A. 13 Prabhu, E. 35 Park, H. 39, 76, 81, 97 Phan, N. 12, 25, 61 Prakper, B. 86 Park, S. 62, 83, 85 Phan, N. 12, 25, 61 <td></td> <td></td> <td></td>			
Pansegrau, C. 72 Peng, J. 64, 103 Poole, W. 106 Pant, P. 30 Peng, Z. 23, 112 Poon, J. 96, 99 Pan, W. 73 Penney, J. 50 Popescu, A. 80 Pan, Y. 109 Penning, O. 50 Popescu-Pelin, G. 80 Pan, Y. 109 Pentzer, E. 100 Poplawsky, J. 20, 58, 59, 62, 83, 111 Parable, N. 61, 84 Perceda, B. 88 Popov, D. 114 Pereda, B. 88 Popovich, V. 85 Parambaman, M. 96 Perez-Torres, A. 37, 47 Porter, K. 25, 49, 58 Pare Scoop Journal A. 13, 84, 85 Porz, L. 98, 99 Pare Journal A. 13, 84, 85 Porz, L. 98, 99 Perusin, S. 102 Powell, A. 16, 53 Pare, A. 59 Petit, F. 102 Prabhu, E. 35 Parey, A. 59 Petrella, A. 13 Prabhu, N. 102 Park, H. 39, 76, 81, 97 Petrella, A. 13 Prakper, C.			
Pant, P 30 Peng, Z. 23, 112 Poon, J. 96, 99 Pan, W 73 Penney, J. 50 Popescu. A. 80 Pan, X 36 Penning, O. 50 Popescu. Pelin, G 80 Pan, Y 109 Pentzer, E 100 Poplawsky, J. 20, 58, 59, 62, 83, 111 Parab, N 61, 84 Pereda, B 88 Popov, D. 114 Parab, N 61, 84 Pereda, B 87, 99 Popovich, V 85 Paramore, J 47, 109 Perror, A 13, 84, 85 Porz, L 25, 49, 58 Perros, A 13, 84, 85 Porz, L 98, 99 Perosh, S 102 Powell, A 16, 53 Pareiti, L 95 Pestian, N 12 Poznak, A 95 Pareiki, S 59 Petretto, G 10 Prabhu, E 35 Pareiki, S 17, 64 Petretto, G 10 Prajapati, D 88 Park, H 39, 76, 81, 97 Petretto, G 10 Prajapati, D 88 Park, J 19, 67, 75, 93, 105, 111 <t< td=""><td></td><td>Peng, J</td><td></td></t<>		Peng, J	
Pan, W. 73 Penney, J. 50 Popescu, A. 80 Pan, X. 36 Penning, O. 50 Popescu-Pelin, G. 80 Pan, Y. 109 Pentzer, E. 100 Poplawsky, J. 20, 58, 59, 62, 83, 111 Paquit, V. 13, 30, 83 Perceda, B. 88 Popov, D. 114 Parab, N. 61, 84 Perceyako, J. 87, 99 Popovich, V. 85 Paranthaman, M. 96 Percey-Torres, A. 37, 47 Porter, K. 25, 49, 58 Paraskevopoulou, P. 75 Perusin, S. 102 Powell, A. 16, 53 Paredis, C. 39 Pettit, F. 102 Poznak, A. 95 Parikh, S. 57 Pettella, A. 13 Prabhu, E. 35 Parker, C. 17, 64 Pettetto, G. 10 Prajapati, D. 88 Park, H. 39, 76, 81, 97 Phan, N. 12, 25, 61 Presley, M. 81 Park, S. 62, 83, 85 Phan, N. 12, 25, 61 Presley, M. 81 Park, S. 62, 83, 85 Phillpot, S.	•	Peng, Z	Poon, J
Pan, X. 36 Penning, O. 50 Popescu-Pelin, G. 80 Pan, Y. 109 Pentzer, E. 100 Poplawsky, J. 20, 58, 59, 62, 83, 111 Paquit, V. 13, 30, 83 Pereda, B. 88 Popov, D. 114 Parabab, N. 61, 84 Pereda, B. Popov, D. 114 Paramore, J. 47, 109 Pereda, B. Popov, D. 114 Paramthaman, M. 96 Peresc. Torres, A. 37, 47 Porter, K. 25, 49, 58 Person, A. 13, 84, 85 Porz, L. 98, 99 Pertusin, S. 102 Powell, A. 16, 53 Pertusin, S. 102 Powell, A. 16, 53 Pertusin, S. 102 Prabhu, E. 35 Pettit, F. 102 Prabhu, E. 35 Pettetla, A. 13 Prabhu, F. 35 Pettetto, G. 10 Prajapati, D. 88 Parker, C. 17, 64 Phan, N. 12, 25, 61 Presley, M. 81 Parker, S. 62, 83, 85 Phan, N. 12, 25, 61 Prickard, P.		Penney, J	Popescu, A 80
Pan, Y. 109 Pentzer, E. 100 Poplawsky, J. 20, 58, 59, 62, 83, 111 Paquit, V. 13, 30, 83 Pereda, B. 88 Popov, D. 114 Parab, N. 61, 84 Perepezko, J. 87, 99 Popovich, V. 85 Paranthaman, M. 96 Perez-Torres, A. 37, 47 Porter, K. 25, 49, 58 Paraskevopoulou, P. 75 Peredis, C. 39 Perusin, S. 102 Powell, A. 16, 53 Paredis, C. 39 Petit, F. 102 Powell, A. 16, 53 Parey, A. 59 Petit, F. 102 Prabhu, E. 35 Park, G. 17, 64 Petretto, G. 10 Prajapati, D. 88 Park, J. 19, 67, 75, 93, 105, 111 Phan, N. 12, 25, 61 Presley, M. 81 Park, S. 62, 83, 85 Phan, T. 26 Price, P. 86 Phillips, N. 55, 100 Prichard, P. 47, 109 Phillips, S. 87 Primig, S. 22, 72, 93, 107 Phuah, X. 99 Primus, C. 106 <t< td=""><td></td><td>Penning, O 50</td><td>Popescu-Pelin, G80</td></t<>		Penning, O 50	Popescu-Pelin, G80
Paquit, V		Pentzer, E	Poplawsky, J 20, 58, 59, 62, 83, 111
Paradh, N. 61, 84 Paramore, J. 47, 109 Paramore, J. 47, 109 Paranthaman, M. 96 Paraskevopoulou, P. 75 Paredis, C. 39 Parent, L. 95 Parey, A. 59 Parikh, S. 57 Parker, C. 17, 64 Park, H. 39, 76, 81, 97 Park, J. 19, 67, 75, 93, 105, 111 Park, S. 62, 83, 85 Park, G. 22 Parolini, F. 113 Parrish, R. 86 Parr, Z. 100 Parvulescu, M. 109 Picterall C. 22 20 43, 52, 50, 62 Parvulescu, M. 109			- '
Paramore, J 47, 109 Perez-Torres, A 37, 47 Porter, K 25, 49, 58 Paranthaman, M 96 Perron, A 13, 84, 85 Porz, L 98, 99 Paraskevopoulou, P 75 Perusin, S 102 Powell, A 16, 53 Paredis, C 39 Petit, F 102 Prabhu, E 35 Parent, L 95 Petit, F 102 Prabhu, E 35 Parikh, S 57 Petretla, A 13 Prabhu, N 102 Parikh, S 57 Petretto, G 10 Prajapati, D 88 Pefferkorn, F 13 Prakapenka, V 36 Park, H 39, 76, 81, 97 Phan, N 12, 25, 61 Presley, M 81 Park, J 19, 67, 75, 93, 105, 111 Phan, T 26 Price, P 86 Park, G 22 Phillips, I 60 Prime, M 14 Philips, I 60 Prime, M 14 Phillpot, S 87 Priming, S 22, 72, 93, 107 Phuah, X 99 Primus, C 106			-
Paranthaman, M. 96 Paraskevopoulou, P. 75 Paredis, C. 39 Parent, L. 95 Parent, L. 95 Parent, S. 102 Pornak, A. 95 Pettit, F. 102 Prabhu, E. 35 Petrella, A. 13 Parker, C. 17, 64 Park, H. 39, 76, 81, 97 Park, J. 19, 67, 75, 93, 105, 111 Park, S. 62, 83, 85 Parks, G. 22 Parolini, F. 113 Parrish, R. 86 Parr, Z. 100 Parvulescu, M. 109 Parvulescu, M. 109			
Paraskevopoulou, P 75 Paredis, C 39 Parent, L 95 Parent, L 95 Parey, A 59 Parikh, S 57 Parker, C 17, 64 Park, H 39, 76, 81, 97 Park, J 19, 67, 75, 93, 105, 111 Park, S 62, 83, 85 Parks, G 22 Parolini, F 113 Parrish, R 86 Parr, Z 100 Parvulescu, M 109			
Paredis, C. 39 Pestian, N. 12 Poznak, A. 95 Parent, L. 95 Petit, F. 102 Prabhu, E. 35 Parent, L. 95 Petit, F. 102 Prabhu, E. 35 Parent, C. 159 Petrella, A. 13 Prabhu, N. 102 Parker, C. 17, 64 Petretto, G. 10 Prajapati, D. 88 Parker, C. 17, 64 Phan, N. 12, 25, 61 Presley, M. 36 Parkin, C. 111 Phan, N. 12, 25, 61 Presley, M. 81 Park, J. 19, 67, 75, 93, 105, 111 Phan, T. 26 Price, P. 86 Philips, N. 55, 100 Prichard, P. 47, 109 Philips, I. 60 Prime, M. 14 Phillpot, S. 87 Primig, S. 22, 72, 93, 107 Phuah, X. 99 Primus, C. 106 Parrish, R. 86 Pibulchinda, P. 70 Prithivirajan, V. 35 Picak, S. 19 Provencher, B. 30 Parvulescu, M.			
Parent, L. 95 Parent, L. 95 Parey, A 59 Parikh, S. 59 Parikh, S. 57 Parker, C 17, 64 Park, H. 39, 76, 81, 97 Parkin, C 11 Park, J. 19, 67, 75, 93, 105, 111 Park, S. 62, 83, 85 Park, G. 22 Parolini, F 113 Parrish, R. 86 Parr, Z. 100 Parvulescu, M. 109	•		
Parent, L. 95 Parey, A. 59 Parikh, S. 57 Parker, C. 17, 64 Park, H. 39, 76, 81, 97 Parkin, C. 111 Park, J. 19, 67, 75, 93, 105, 111 Park, S. 62, 83, 85 Parks, G. 22 Parolini, F. 113 Parrish, R. 86 Parr, Z. 100 Parvulescu, M. 109 Petretlla, A. 13 Prablu, N. 102 Petretto, G. 10 Prajapati, D. 88 Petretto, G. 10 Prajapati, D. 88 Petretto, G. 10 Prajapati, D. 36 Phan, N. 12, 25, 61 Presley, M. 81 Phan, N. 26 Price, P. 86 Philips, N. 55, 100 Prichard, P. 47, 109 Phillips, I. 60 Prime, M. 14 Phillpot, S. 87 Priming, S. 22, 72, 93, 107 Phuah, X. 99 Primus, C. 106 Prival, S.			
Parker, K. 59 Parkh, S. 57 Parker, C. 17, 64 Park, H. 39, 76, 81, 97 Parkin, C. 111 Park, J. 19, 67, 75, 93, 105, 111 Park, S. 62, 83, 85 Phillips, N. 55, 100 Phillips, I. 60 Prime, M. 14 Phillips, S. 87 Prime, M. 14 Phillpot, S. 87 Priming, S. 22, 72, 93, 107 Phuah, X. 99 Primus, C. 106 Pibulchinda, P. 70 Prickpill, C. 22, 72, 93, 107 Provencher, B. 30 Provencher, B. 30	Tarchi, L		•
Parker, C 17, 64 Park, H 39, 76, 81, 97 Parkin, C 111 Park, J 19, 67, 75, 93, 105, 111 Park, S 62, 83, 85 Parks, G 22 Parolini, F 113 Parrish, R 86 Parr, Z 100 Parvulescu, M 109	•		•
Park, H. 39, 76, 81, 97 Phan, N. 12, 25, 61 Presley, M. 81 Parkin, C. 111 Phan, T. 26 Price, P. 86 Park, J. 19, 67, 75, 93, 105, 111 Philips, N. 55, 100 Prichard, P. 47, 109 Parks, G. 22 Phillips, I. 60 Prime, M. 14 Parolini, F. 113 Phillpot, S. 87 Primig, S. 22, 72, 93, 107 Phuah, X. 99 Primus, C. 106 Parrish, R. 86 Pibulchinda, P. 70 Prithivirajan, V. 35 Parvulescu, M. 109 Provencher, B. 30 Provencher, B. 30			
Parkin, C. 111 Phan, T. 26 Price, P. 86 Park, J. 19, 67, 75, 93, 105, 111 Philips, N. 55, 100 Prichard, P. 47, 109 Parks, G. 62, 83, 85 Phillips, I. 60 Prime, M. 14 Parolini, F. 113 Phillips, S. 87 Primig, S. 22, 72, 93, 107 Parrish, R. 86 Pibulchinda, P. 99 Primus, C. 106 Parry, Z. 100 Picak, S. 15 Priya, S. 19 Parvulescu, M. 109 Pickerell C. 23, 20, 42, 52, 50, 63 Pruve, T. 110	Parker, C		
Park, J. 19, 67, 75, 93, 105, 111 Philips, N. 55, 100 Prichard, P. 47, 109 Park, S. .62, 83, 85 Phillips, I. 60 Prime, M. .14 Parks, G. .22 Phillips, S. 87 Primig, S. .22, 72, 93, 107 Parolini, F. .113 Phuah, X. .99 Primus, C. .106 Parrish, R. .86 Pibulchinda, P. .70 Prithivirajan, V. .35 Parr, Z. .100 Provencher, B. .30 Parvulescu, M. .109 Provencher, B. .30	Park, H39, 76, 81, 97		
Park, S .62, 83, 85 Phillips, I .60 Prime, M .14 Parks, G .22 Phillips, I .60 Prime, M .14 Parolini, F .113 Phillips, S .87 Primig, S .22, 72, 93, 107 Parrish, R .86 Pibulchinda, P .70 Prithivirajan, V .35 Parr, Z .100 Picak, S .15 Priya, S .19 Parvulescu, M .109 Provencher, B .30	Parkin, C		
Parks, G. 22 Parolini, F. 113 Parrish, R. 86 Parr, Z. 100 Parvulescu, M. 109 Pillpot, S. 87 Primig, S. 22, 72, 93, 107 Phuah, X. 99 Primus, C. 106 Picak, S. 15 Priya, S. 19 Provencher, B. 30 Provencher, B. 30	Park, J 19, 67, 75, 93, 105, 111	_	
Parks, G 22 Phillpot, S 87 Primig, S .22, 72, 93, 107 Parolini, F 113 Phuah, X .99 Primus, C .106 Parrish, R .86 Pibulchinda, P .70 Prithivirajan, V .35 Parr, Z .100 Picak, S .15 Priya, S .19 Parvulescu, M .109 Provencher, B .30 Pickerell C .22, 20, 42, 52, 50, 63 Provencher, B .30	Park, S	=	
Parolini, F 113 Phuah, X 99 Primus, C 106 Parrish, R 86 Pibulchinda, P 70 Prithivirajan, V 35 Parr, Z 100 Picak, S 15 Priya, S 19 Parvulescu, M 109 Provencher, B 30 Pickerell C 22 20 42 52 50 63 Provencher, B 110			
Parrish, R. 86 Pibulchinda, P. 70 Prithivirajan, V. 35 Parr, Z. 100 Picak, S. 15 Priya, S. 19 Parvulescu, M. 109 Provencher, B. 30 Picak, S. 22, 20, 42, 52, 50, 63 Provencher, B. 100			
Parr, Z			•
Parvulescu, M		Picak, S	
Distroll ($^{\circ}$ 22.20, A2.50, E2.50, E2.50, E2.50, E2.50, E3.50, E3.5			Provencher, B
Paschke, H		Pickrell, G 22, 29, 42, 52, 59, 63,	Pruyn, T110
74.97.105.119.0 Detected N	Pastor, J	74, 87, 105, 112	Pryds, N
		Pierce, B	Przybyla, C17, 58, 97
1 astor,)	1 atc., 1/1		•
		Pierce, B	Przybyla, C17, 58, 97

Przybylowicz, P 105	Ramsdell, M	Riesenhuber, L
Pujari, A 32	Ramsey, B	Rignanese, G
Pyeon, J	Randall, C	Riman, R
0	Randeria, M	Rimsza, J 10, 19, 34, 44, 98, 104
Q	Randjelovic, B	Rinderspracher, B
Qadri, N	Rangel, F	Rindler, J
Qadri, S	Ranger, C	Rios, O
Qian, X	Rankouhi, B	Ristoscu, C80
Qi, J	Rao, A	Ritchie, R
Qi, L	Rao, G102	Rittenhouse, J
Qin, D	Rao, P	Ritter, K
Qing, G	Rao, R55	Rivera-Jiménez, S107
Qin, M	Raptopoulos, G	Rivero, I
Qiu, A	Rasmussen, M	Rix, J53
Qiu, J	Rath, M	Roach, M52, 74, 89, 90
Qiu, S	Rau, A110	Robertson, M90
Qiu, Z	Rauch, H	Robertson, S
	Raush, J	Robinson, B
Qi, Y	Ravinder, R	Roche, A
Qu, B	Raza, A	Rocky, B
Quinn, L	Reaney, I	Rödel, J
Quintana, M	Rebak, R	Rodriguez, A90
Quintana, O	Rebellato, M	Rodriguez De Vecchis, R 26, 29, 77
Quirarte, G	Reddy, M	Rodriguez-Ibabe, J
Qu, M	Reed, T	Rodriguez Sala, M
Qureshi, A	Reeja-Jayan, B	Rogenski, E
Qu, X	Reese, L	Rogers, R
R	Reid, M	Rohatgi, A
K	Reimanis, I	Rohatgi, P
Radhakrishnan, R 24, 28, 52, 74, 89, 90	Reitz, R	Rohnke, M
Radmilovic, V	Remple, C	Rohrer, G
Radovic, I	Ren, G	Rojac, T
Radwan, A	Ren, Q	Rollett, A 11, 12, 13, 14, 27, 39, 56, 61,
Raghavan, R	Ren, Z	63, 76, 81, 84, 101
Rahman, A	Ress, J	Romaine, S
Raiman, S	Reutzel, T	Roman-Manso, B
Rai, R	Revaz, B	Romanovski, V
Rajaram, S 61	Reynolds, D	Romanov, V 80
Rajendran, R	Reynolds, W	Romberg, S
Raj, R	Rezaei, E 65	Romedenne, M
Raj, S	Rhee, H	Rondinelli, J
Rakhmonov, J	Rheinheimer, W	Ronevich, J
Ralescu, A	Rhein, R	Rose, D
Ramachandra, C	Rhonehouse, D	Rosei, F
Ramakrishnan, A	Ribar, S	Rosser, M
Ramakrishnan, S 67	Richter, B	
Ramesh, K		Ross, M
Ramirez, A	Rickert, K	Rothleutner, L
Ramkumar, J	Rickman, J	Rovinelli, A
Ramlatchan, A	Ricote, S	Roy, D
Ramos, H	Ridley, M	Roy, P
1(01)1(0), 11		
	Riedel, R	Roy, S
Ramprasad, R	Riedel, R	Roy, S

Rudzik, T	Saleh, T	Schawe, J
Rueschhoff, L 12, 26, 40, 49, 61, 65, 70,	Salem, A12, 25, 61, 67, 85	Schenck, E
72, 82, 110	Salem, H	Scherer, M
Ruggles-Wrenn, M	Salge, M	Scheu, C
Rulinda, L	Salifu, A	Schick, D
Runcevski, T	Salloom, R	Schiffres, S
Runowski, M	Salvalaglio, M99	Schlereth, C
Runyon, B	Salvo, M	Schlup, A
Rupert, T	Samajdar, I	Schmidt-Verma, A 87
Rusch, J	Samanta, A55, 66	Schmitz, T
Ruscitto, D	Samanta, S	Schneider, G
Rushton, M	Sambandam, M	Schneider, J
Russell, T	Samimi, P	Schneider, M
Rutherford, A	Samin, A	Schoell, R14, 86
Rutherford, M53	Samolyuk, G	Schoenung, J
Ruud, J	Sampath, S	Schorne Pinto, J
Ruvalcaba Quintero, D	Sanchez, F	Schreiber, D
Ruziev, U	Sanchez-Herencia, A	Schubert, H
Ruzycki, N	Sandhage, K	Schuh, C
Ryan, J	Sanghera, J	Schultz, L
Ryan, K	Sangral, S	Schulze, W
Ryou, H	Sankaranarayanan, S	Schulz, M
Ryssy, J	San Marchi, C	Schweitenwein, M
S	San, S	Schwinn, V
	Sansoucie, M	Scime, L
Sabolsky, E 12, 29, 63, 87, 89, 90, 96	Santala, M	Scott-Emuakpor, O
Sabolsky, K	Sant, G	Scully, J
Sabri, F	Santiago, R	Seal, S
Sachdev, A	Santofimia, M	Seeley, Z 60 Segel, B 100
Sadek, A	Santoninia, M	Sehirlioglu, A 37, 56, 67, 70, 100, 103
Sadek, S	Saprykin, E	Seidt, J
Sadowski, B	Sargeant, D	Seita, M
Sagar, S	Sarin, P 23, 24, 36, 38, 47, 53, 68, 73,	Selbach, S
Saghaian, S	75, 108	Selim, F
Sahasrabuddhe, H	Sarkar, S	Sen, F
Sahasrabudhe, H 49	Sasan, K	Senkov, O
Sahoo, M	Satko, D	Seo, J
Sahoo, S	Sato, M	Seo, M
Sahu, A96	Satyavolu, J	Sepahi, M
Sahu, K	Sauerschnig, P	Sereda, B 28, 29, 30, 66, 74, 77, 91,
Sahu, R	Sawant, T	114, 115
Sainju, R	Saxena, A	Sereda, D28, 29, 30, 66, 74, 77, 91,
Saito, T	Sayre, E	114, 115
Saiz, E	Scannapieco, D	Serpa, C
Sakidja, R	Schaedler, T25, 49, 58	Sesha, K
Salah, B	Schaefer, M	Sesso, M
Salameh, C	Schaeffer, B	Sethuraman, S
Salanova, A	Schafföner, S	Setia, P
Salas, R	Schaper, M	Settle, M
Salehi, S	Schappel, D	Shabani Nezhad, P94
Saleh, M	Scharf, T51	Shadangi, Y
Jaicii, IVI		-

Shade, P	Shirey, K 58	Smedskjaer, M
Shadle, D	Shirvan, K	Smith, C
Shahabi, M	Shishkovsky, I 50, 84	Smith, D
	•	
Shahabuddin, M	Shivam, V	Smith, E
Shahani, A	Shi, Y	Smith-Gray, N70
Shah, M	Short, M14, 28, 42, 51, 86	Smith, H70
Shakoor, A	Shrestha, S	Smith, K
Shalomeey, V21, 27, 33, 43, 44, 63,	Shrivastava, B	Smith, L
	Shrivastav, S	Smith, N
64, 74		
Shamsdini, S 62	Shulman, H	Smith, T33, 48, 89
Shang, S	Shyam, A	Smok, W
Shang, Z37, 77	Shyrokobokov, V	S, N
Shan, Z	Siderius, D	Snyder, G
Shao, L	Sierlinger, R	Snyder, S
Shao, M	Sierros, K	Soares, D
Shao, Y	Silverstein, R	Soboyejo, W
Sharahili, M	Simonds, B	Sofinowski, K
Sharits, A	Simon, P111	Sohn, Y
Sharma, A	Simons, H	Sójka, M
Sharma, B	Simpson, T	Sokolov, A
Sharma, R	Simpson, W	Solomon, A
	•	
Sharma, S	Sims, A	Somekawa, H
Sharon, J	Sims, H	Somers, N
Sharpe, C	Sims, Z85	Song, D
Shash, A94	Sinfield, M	Song, G
Shedekar, V	Singh, A	Song, H
Shehata, B	Singh, G32, 43, 53, 58, 64, 67, 71, 72,	Song, I
Sheikhhosseini, A	79, 87, 92, 93, 109, 110	· ·
		Song, M
Shekhar, S	Singh, J	Song, X
Shekhawat, D112	Singh, K	Song, Y
Sheldon, B	Singh, L	Son, H56, 100, 106
Shen, C	Singh, M 10, 18, 24, 25, 38, 73, 79, 94	Soni, A
Shen, M	Singh, N	Soni, V
Shen, Z	Singh, P	Son, J
Shetty, A	Singh, R	Sooby, E
Shevade, S	Singh, S 91, 103, 104, 106, 112	Sopcisak, J
Sheyko, S 29, 33, 42, 43, 44, 52, 54,	Singh, V	Sorensen, D
63, 64, 71, 73, 74	Sinha, S	Sørensen, S
Shifler, D	Sisco, K	Sotelo Martin, L
Shih, M	Sisson, R	Soussan, L
Shi, J	Sitkiewicz, M	Sparks, T
		•
Shillig, T90	Sitko, M	Spatari, S
Shilo, V	Sivakumar, A	Spear, A
Shima, H	Sivaprasad, K	Spears, T
Shimamura, K60, 112, 113	Skinn, B	Speer, J
Shin, D64, 90, 103	Skinner, S95	Speghini, A
Shinohara, M	Slagter, A	Spencer, B
Shintani, S	•	
	Sleim, M	Spoerer, T
Shi, Q	Slone, C	Sprayberry, M
Shi, R13, 22, 27, 41, 50, 51, 58, 59,	Sloop, T	Spreitzer, M
67, 73, 77, 85, 112	Small, I	Spriano, S
Shiraishi, J	Smeacetto, F	Sreeramagiri, P55
		<u>-</u>

0.1.0	0.1	m
Sridar, S	Sukumaran, S	Taminger, K
Sridharan, K111	Su, L	Tamirisakandala, S
Srinivasan, S	Sulatchaneenopdon, N 100, 106	Tam, W
Sriram, H	Suleiman, F	Tandoc, C55
Srivastava, S	Sulejmanovic, D 64	Tandon, R
Srivilliputhur, S	Sulemanovic, D 82	Tangermann-Gerk, K
Srolovitz, D	Sulentic, C	Tang, G
Stack, P	Suman, S	Tang, J
Stajcic, A	Sumpter, B90	Tang, M
		•
Stanciu, L	Sun, C	Tan, N
Stanek, C	Sundararaghavan, V20, 77	Tansel, D
Stanley, B	Sung, S	Tanski, T34, 100
Starikov, S	Sun, H53, 114	Tan, X
Stark, R111	Sun, J	Tarancon, S
Stauffer, D	Sun, K	Tariq, H
Stauff, N	Sun, L	Tasan, C
Stefani, N	Sun, R	Tatami, J
Stegman, B	Sun, S	Tate, S
Steiner, J	Sun, T	Taub, A
Steiner, M	Sun, Y	Taylor, C
-	Su, R	•
Steingrimsson, B		Taylor, E24, 28, 38, 90
Steinmiller, E	Suter, R	Taylor, H
Stephens, D	Sutton, A	Taylor, K
Stephenson, L	Sutton, B	Taylor, N
Sternlicht, H 60	Sutton, C	Taylor, S
Steveson, A	Suwandi, E 56	Taylor, T90
Stevick, J	Su, Y	Taylor, W
Stewart, B	Suzuki, H96	Tayon, W
Stewart, C 57	Suzuki, T	Teeter, M
Stewart, R	Swayamjyoti, S 80	Tekalur, S
Stimac, J	Swift, J	Tekumalla, S 40
Stinville, J	Swift, M	Telesman, J 89
Stocek, N	Szeliga, D	Telgerafchi, A
Stocks, M	Szenknect, S	Temple, A
Stokes, H	Szlufarska, I	Tenne, D
Stolaroff, J	5ZIUIdISKd, 1	
Stonkevitch, E	T	Tenney, J
	1	Terauchi, S
Stoodt, K	Tabish, T	Terrani, K
Storck, S	Taheri Andani, M	Tesar, K
Stotzer, V	Taheri, M11, 20, 34, 36, 45, 48, 49, 51,	Thadhani, N
Stoudt, M12, 26, 41, 84	54, 55, 58, 65, 66, 99, 110	Thakur, A
Strantza, M	Taillon, J	Theska, F
Strayer, S	Takadama, H	Thind, A
Strumban, E 61		Thodla, R
Strzelecki, A	Takahashi, E	Thoma, D
Stubbers, A	Takahashi, T	Thomas, J
Stubbs, J	Takamura, H95	Thomas, P
Subedi, K	Takeda, M	Thomas Tharian, K
Sudan, K	Talaat, A	Thombansen, U
	Talapatra, A	
Suematsu, H 10, 24, 38, 73, 79, 100, 106	Taller, S	Thompson, C
Suh, J	Tallman, A	Thompson, G
Su, J	Tallon, C21, 42, 58	Thornton, K
	• ,	

Illuault, A 102, 103	U	Verilla, A
Thway, T		Verma, J
Tiamiyu, A	Uberuaga, B 28, 42, 44, 52, 58, 115	Verma, R
Tian, X	Ubic, R 15, 29, 42, 70, 88, 103	Vervlied, J
	Ubienski, T	
Tian, Y	Uddin, S	Vervoort, S
Tidrow, S		Vetrone, F
Tiley, J	Uehara, H95	Viard, A
Timalsina, B	Ueno, T	Vienna, J
Timme, N	Ullberg, R	Vijapur, S
Titus, M	Ulrich, A	
	Uranga, P44, 57, 88, 94, 106	Vijayan, S
To, A	· ·	Vikrant, K
Tochigi, E95, 97	Urruth, G	Villalobos, G
Togaru, M14	Uskokovic, D	Villanueva-Alarcón, I
Toher, C	Uskokovic, V	Vishnu Narayanan, K 87
Tomko, K	Utegulov, Z	Viswanathan, G 48
Tong, J	Uwidia, I	Vitiello, D
	Uwidia, O	
Tong, W	Uzonwanne, V 57	Vlahovic, B
Tonks, M	Ozonwanne, v	Vleugels, J
Topal, G	\mathbf{V}	Voellm, N
Topper, B	V	Vogli, E
Topsakal, M	Vachhani, S	Voigt, S
		Volkert, C
To, T	Vadlamani, B	
Toualbi, L	Vaicik, M	Volokh, V
Tran, H	Valdez, J	Vomiero, A
Tran, M	Valenzuela, E	von Spakovsky, M
Traxel, K	Vallabh, c	Voorhees, P
Trelewicz, J	van Benthem, K	,
		W
Tremper, A	Vandeperre, L	••
Trice, R 11, 17, 31, 36, 37, 42, 91,	Van der Ven, A	Wachs, D
92, 103	van der Wiel, D	Wadghule, S
Trieff, D	van de Walle, A35, 46, 55, 66	Wagner, N
Trimby, P	Van Meerbeek, B	
Tripathi, P	Varadharajan Idhaiam, K 87, 90	Wagoner, R
Trojan-Piegza, J		Walden, M
	Varadharajan Id, K	Walker, J
Trometer, N	Varga, J	Wallace, L
Tsai, F	Varshney, P	Walters, L
Tsai, J	Varshney, V	Wan, D
Tsai, M	Vassen, R	
Tsaknopoulos, K	Vass, J	Wang, B
T-Sarraf, H		Wang, C
	Vaughan, M	Wang, D
Tse Lop Kun, J	Vázquez-Gómez, O102, 107	Wang, F 21, 35, 54, 56, 65, 100, 103
Tseng, K	Vela, L	Wang, G50, 95, 96
Tseplyaev, V	Velraj, A	Wang, H 27, 37, 77, 81, 95, 99, 105
Tsuji, K	Vemulapalli, S	č
Tsyganov, V	Venkatakrishnan, S	Wang, J 15, 19, 43, 46, 48, 55, 79, 88
Tufariello, J		Wang, K16, 88, 111
	Venkataraman, A	Wang, L
Tu, M	Venkateswaran, T	Wang, M 22, 47, 57, 75, 99, 106, 107
Tuma, C	Venugopal, V	Wang, Q11, 55
Tunes, M	Vergara-Hernandez, H102	Wang, R
Tu, X93	Vergara-Hernández, H107	=
Tverjanovich, A	Verhülsdonk, M	Wang, S
Tyler, K	Verlage, E	Wang, T
2,222, 201111111111111111111111111111111	verlage, E10/	Wang, W57, 91, 92
		425

Wang, X 21, 29, 33, 35, 43, 49, 55, 58,	Wildfire, C	Xiao, H
62, 65, 77, 81, 86, 102, 111	Wilhelm, M	Xia, W
Wang, Y 16, 21, 22, 26, 28, 29, 33, 35,	Wilks, G 67	Xie, R60, 112, 113
40, 42, 43, 47, 48, 58, 65, 66, 80,	Williams, D	Xi, J64, 111
89, 92, 94, 98, 111, 115	Williams, M	Xiong, C54
		Č
Wang, Z. 12, 26, 29, 40, 49, 61, 62, 77, 83	Williamson, B	Xiong, H
Wanniarachchi, J	Williams, R	Xiong, W 24, 25, 26, 29, 35, 41, 46,
Wanni, J	Wilson-Heid, A 80	47, 49, 77
Warcaba, M	Wineger, T	Xiu, P
	•	
Warchol, M	Winfrey, L	Xu, C
Warchomicka, F	Wisner, B 61	Xue, F
Ware, L	Wittmann, M	Xue, S
Warren, J	Wittwer, M	Xu, H 36, 65, 86, 94, 100, 114, 115
Warsi, M	Wladarski, J	Xu, J
Waryoba, D	Wohninsland, A	Xu, L
Waseem, S	Wolak, M	Xu, M
Waterman, R	Wolfe, T	Xu, P31, 58
Waters, C	Wolfgang, R19, 34, 45, 60, 71, 99	Xu, S
Watring, D	Wollmershauser, J 18, 43, 60, 64, 65, 97	Xu, T
Watson, C	Wong, A51	Xu, X91
Watts, J	Wong, B	Xu, Y
Watzman, S 61	Wong, C	Xu, Z
Weaver, J	Wong-Ng, W	.,
	6 6	Y
Weber, B	Wood, B	•
Weber, W111	Wood, J	Yablinsky, C
Webler, B	Woods, M	Yacout, A
Webster, R	Woodward, C	
Wei, B	Woo, J	Yadav, A
Weinberger, C	Woolstenhulme, N	Yadav, M
č		Yaddanapudi, K46
Wei, S	Woryk, L	Yakaboylu, G96
Weiss, D	Wozny, P	Yamaguchi, S113
Weisshaupt, K	Wright, R53	Yamakov, V
Wei, W	Wu, D111, 114	
Wei, Z	Wu, J	Yamamoto, N
Welk, B	Wu, P	Yamamoto, S
		Yamamoto, Y111
Wells, J	Wu, S 80	Yamanaka, K
Wen, H11, 51	Wusatowska-Sarnek, A 52, 63	Yanagihara, K
Werner, M	Wu, W	
Wessman, A	Wu, X	Yang, B
West, G	Wu, Y 10, 11, 20, 24, 25, 34, 38, 39,	Yang, C98, 104, 105, 111
		Yang, J96
Whaley, T	45, 46, 54, 55, 60, 65, 66, 73,	Yang, K96
Wharry, J14, 28, 32, 42, 51, 71, 86,	79, 81, 82, 98, 99, 112	Yang, L
93, 94, 98, 111	Wu, Z	Yang, M
Wheeler, R	Wyatt, B	
Wheeler, W	Wyckoff, C12, 39, 61, 70	Yang, P
		Yang, Q
White, J	Wycoff, C	Yang, S 14, 81, 87, 92, 100, 103
Wicker, R	Wynblatt, P	Yang, X58, 76, 81
Widgeon Paisner, S 42		Yang, Y 37, 51, 66, 73, 79, 111
Widom, M		
Wiesner, V	X	Yang, Z
Wiik, K 19, 33, 44, 53, 65, 95, 96		Yan, J99
	Xiang, B	Yan, M
Wijesinghe, K	Xiang, F	Yano, K
	2110115, 1	, , , , , ,

Yan, W	7
·	Z
Yan, X	Zaborowska, M
Yao, T	Zahiri, A
Yao, X	Zaikina, J
Yarasi, S	Zakerinia, H
Yarwood, R	Zaki, M
Yasuda, K	Zalameda, J
Yasuda, Y	Zanetta, P
Yazbeck, M	Zanotto, E
Yazhenskikh, E	Zapolsky, H
Yee, T	• •
Yeh, A	Zebarjadi, M
Yeh, J99	Zega, T
Yeong, H	Zeller, R
Ye, W	Zeng, Y
Ye, Y	Zhai, Y
Yildirim, C98	Zhang, B
Yim, C100	Zhang, C
Yim, S90	Zhang, D
Yingling, J	Zhang, F
Yin, H	Zhang, G25, 46, 60
Yin, S	Zhang, H 32, 43, 46, 53, 64, 71, 92,
Yin, T	93, 99, 111
Yoder, J	Zhang, J11, 19, 25, 39, 50, 72, 75, 76,
Yokoi, T	77, 80, 81, 92, 97
Yoon, J	Zhang, K
Yoshida, K	Zhang, L14, 109
Yoshimura, A 80	Zhang, M
Yoshimura, M	Zhang, R
You, H	Zhang, W12, 26, 50, 62, 85
Youngblood, J	Zhang, X 12, 35, 36, 37, 53, 59, 73, 77,
Young, J	103, 111, 114, 115
Young, M	Zhang, Y20, 36, 55, 58, 70, 73, 101,
Youngman, R	110, 111
Yovkova, F	Zhang, Z
Yuan, B	Zhan, X
	Zhao, B
Yuan, D	Zhao, C 61
Yuan, Y	Zhao, J
Yuen, A	Zhao, L
Yue, Y	21100, 12

Zhao, S........... 36, 48, 58, 73, 100, 110

Zhao, Y........... 32, 71, 93, 94, 102, 111

Zheng, Y21, 33, 35, 58, 59, 67, 73,

102, 112

Yu, H......23, 25, 50

Yu, Q......51, 79

Zhong, W
Zhong, Y20, 34, 45, 53, 54, 55, 65, 66,
95, 99, 100
Zhou, C
Zhou, G
Zhou, H
Zhou, L
Zhou, W51, 114
Zhou, X
Zhou, Y
Zhu, D
Zhu, J
Zhu, L
Zhu, Q
Zhu, R
Zhu, T62, 111
Zhu, W
Zhu, Y14
Ziabari, A
Ziatdinov, M
Zieger, Y
Zinkle, S54, 58
Ziurys, L
Zok, F
Zolfaghari, A
Zuback, J
Zucah, E
Zuo, J
Zuo, L 19, 33, 44, 53, 65, 95, 96
Zuranski, C
Zurob, H
Zurutuza, I
Zych, E
•